发烧论坛

注册

 

发新话题 回复该主题

How We Test Amplifiers如何测试放大器 [复制链接]

查看: 6692|回复: 46
31#

NAD C372 Integrated Amplifier

Additional Data

  • Measurements were made at 120V AC line voltage with both channels being driven; measurements made on left channel unless otherwise noted. The volume control was set to the reference position to produce 5W into 8 ohms with 500mV input unless otherwise noted.
  • This integrated amplifier does not invert polarity with or without tone controls engaged.
  • AC line current draw:
    • at idle: 0.59A
    • in standby: 0.04A
  • Input sensitivity for 1W output into 8 ohms, volume at maximum: 35.0mV
  • Output impedance at 50Hz: 0.035 ohms
  • Gain, output voltage divided by input voltage, volume at maximum: 80.8X, 38.2dB
  • Output noise, 8-ohm load, 1k-ohm input termination, Lch/Rch
    • Volume control at reference position
      • wideband: 0.40mV, -77.0dBW / 0.37mV, -77.7dBW
      • A weighted: 0.11mV, -88.2dBW / 0.078mV, -91.2dBW
    • Volume control full clockwise
      • wideband: 0.62mV, -73.2dBW / 0.54mV, -74.4dBW
      • A weighted: 0.14mV, -86.1dBW / 0.095mV, -89.5dBW
    • Volume control full counterclockwise
      • wideband: 0.38mV, -77.4dBW / 0.34mV, -78.4dBW
      • A weighted: 0.058mV, -93.8dBW / 0.089mV, -90.0dBW

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 189W
  • 8-ohm load at 10% THD: 228W

  • 4-ohm load at 1% THD: 185.5W
  • 4-ohm load at 10% THD: 228.7W
General
The NAD C372 is a medium-power solid-state integrated amplifier. Overall gain of the unit is about normal for an integrated amplifier. Of interest, and not always the case, is that the overall input/output polarity is maintained as non-inverting when the tone controls are engaged.
Chart 1 shows the frequency response of the amp with varying loads. The high-frequency response is quite wide. with an approximate 3dB down point of 200kHz. Output impedance, as judged by the closeness of spacing between the curves of open-circuit, 8-ohm, and 4-ohm loading, is quite low in the audio band. The usual NHT dummy-load curve is not shown as the variations in the response would not show. The variation with the NHT dummy load in the audio range is of the order of +/-0.05dB -- a negligible amount. The frequency response was quite independent of volume-control setting.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. Unusual for a solid-state power amplifier, the attainable power is about the same for 4- and 8-ohm loads. Amount of distortion is low right up to clipping -– the behavior of most solid-state power amplifiers.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at low and high frequencies is low except at the low-frequency extremes at the 150W level where the power supply just can’t supply the steady-state power in the 4-ohm loads. This didn’t happen with the 8-ohm loads.
Damping factor vs. frequency is shown in Chart 4 and is of a value and nature typical of many solid-state amplifiers being high up to about 1kHz and then rolling off with frequency.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. The magnitude of the AC-line harmonics are low and simple, and intermodulation components of line harmonics with signal harmonics are also low. Signal harmonics consist of a tapering off spectrum of even and odd harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Cyan line: 150W
Blue line: 70W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

  • 测量是在120V交流线路电压均为驱动渠道;在左声道,除非另有说明进行的测量。 音量控制设置为参考点产生500mV的输入到8欧姆5W的,除非另有说明。
  • 这种集成放大器不倒置或从事无音调控制极性。
  • 交流线路电流:
    • 在怠速:0.59A
    • 在待机状态:0.04A
  • 1W输出的输入灵敏度为8欧姆,音量开到最大:35.0mV
  • 在50Hz输出阻抗:0.035欧姆
  • 增益,输出电压的输入电压,在最大音量分为:80.8X,38.2分贝
  • 输出噪声,8欧姆负载,1K的欧姆输入终端,廖创兴/ Rch的
    • 音量控制在基准位置
      • 宽带:0.40mV,- 77.0dBW / 0.37mV,- 77.7dBW
      • A加权:0.11mV,- 88.2dBW / 0.078mV,- 91.2dBW
    • 音量控制旋钮顺时针满
      • 宽带:0.62mV,- 73.2dBW / 0.54mV,- 74.4dBW
      • A加权:0.14mV,- 86.1dBW / 0.095mV,- 89.5dBW
    • 音量控制逆时针
      • 宽带:0.38mV,- 77.4dBW / 0.34mV,- 78.4dBW
      • A加权:0.058mV,- 93.8dBW / 0.089mV,- 90.0dBW

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:189W
  • 8欧姆负载为10%总谐波失真:228W

  • 4欧姆负载,1%总谐波失真:185.5W
  • 4欧姆负载为10%总谐波失真:228.7W
一般
的NAD C372是一个中等功率固态放大器集成。 该单位的总增益约为为一体的综合放大器正常。 令人感兴趣的,而不是一味的情况下,其整体的输入/输出极性非反相时音调控制是从事维护。
图1显示了用不同的负载放大器的频率响应。 高频率响应是相当广泛。 与下调为200kHz点近似三分贝。 输出阻抗,如之间开路,8欧姆,4欧姆负荷曲线间距接近判断,是相当低的音频频带。 通常莱科萨斯假负载曲线不显示为响应中的变化将不会显示。 与音频范围内的变化是莱科萨斯假负载的+ / -0.05分贝秩序 - 微不足道。 频率的反应相当的音量控制设置无关。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 寻常的固态功放,达到相同的功率约为4 - 和8欧姆的负载。 低失真的数额直到剪辑 - 大多数固态功率放大器的行为。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 崛起中的低失真和高频率的数额除外水平,在150W的电源供应就不能在4欧姆负载的稳态功耗低频率极端低。 这并没有发生在8欧姆负载。
阻尼系数与频率是在图4所示,并与自然的价值,许多固态被高至约1kHz的频率,然后滚动典型的就是关闭放大器。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 将AC -线路谐波幅度是线路谐波低,简单,和互调分量信号谐波也较低。 信号谐波组成的偶数和奇数谐波频谱逐渐减少。
TOP
32#

Opera Consonance Reference 9.9A Mono

  • Measurements were made with 120V AC line voltage.
  • Gain: 14.9x, 23.5dB.
  • Output noise, 8-ohm load: wideband 1.33mV, -66.5dBW; A weighted 0.110mV, -88.2dBW.
  • AC line current draw at idle: 1.36A.
  • Output impedance (measured by an injection of a constant 1A of current at 50Hz): 2.86 ohms.
  • This amplifier inverts polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 10W
  • 8-ohm load at 10% THD: 22W

  • 4-ohm load at 1% THD: 1.8W
  • 4-ohm load at 10% THD: 17W

  • 16-ohm load at 1% THD: 13W
  • 16-ohm load at 10% THD: 18W
General
The Reference 9.9A SET (single-ended triode) amplifier measured here is typical of a design utilizing the venerable 845 output tube. Frequency response, as seen in Chart 1, rolls off at both ends of the audio range and there is some pronounced ultrasonic aberrations, likely due to the characteristics of the output transformer. Output impedance is moderate giving an approximate plus and minus 2dB frequency-response variation on the NHT dummy speaker load. Total harmonic distortion plus noise as a function of power output for a test frequency of 1kHz is plotted in Chart 2. It shows that the amount of distortion at the 1kHz test frequency is reasonably low at less than 1% up to 10W output for the 8-ohm load on the 8-ohm output (and measures similarly for a 4-ohm load on the 4-ohm output). However, loading the 8 ohm output with 4 ohm or 16 ohm load raises or lowers the distortion considerably. Total harmonic distortion plus noise as a function of frequency at several power levels is plotted in Chart 3. Amount of distortion over the main midrange energy band is less than 1-2% for power outputs of 10W or less. However, distortion does rise considerable at both ends of the audio range. Damping factor versus frequency shown in Chart 4 is a modest 2.5 over the middle range of frequencies, and actually increases a bit at the frequency extremes. Not surprisingly, on the 4-ohm output, the damping factor was about double. In the spectral plot of distortion and noise for a 10W 1kHz signal into an 8-ohm load on the 8-ohm output (Chart 5), the signal distortion components are dominated by the second and third harmonics with the higher-order products tailing off rapidly. There are some 120Hz sidebands around the nulled out fundamental along with a fairly high amount of AC line hum harmonic frequencies. The amount of wideband noise of over 1mV would likely be audible on speakers with efficiencies of 90dB or more.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Magenta line: open circuit
Red line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 8-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line: 8-ohm THD+N
Bottom line (red): 16-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Green line: 20W
Cyan line: 15W
Blue line: 10W
Magenta line: 5W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load


  • 测量是用120V交流电压。
  • 增益:14.9x,二十三点五分贝。
  • 输出噪声,8欧姆负载:宽带1.33mV,- 66.5dBW,一个加权0.110mV,- 88.2dBW。
  • 交流线电流消耗在空闲:1.36A。
  • 输出阻抗(由一个一个固定的1A电流测量注射在50Hz):2.86欧姆。
  • 该放大器颠倒极性。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:10W的
  • 8欧姆负载为10%总谐波失真:22W的

  • 4欧姆负载,1%总谐波失真:1.8W的
  • 4欧姆负载为10%总谐波失真:17W

  • 16欧姆负载,1%总谐波失真:13W的
  • 16欧姆负载为10%总谐波失真:18W的
一般
参考9.9A套(单端三极管)测量放大器在这里是一个古老的845利用输出管设计的典型。 频率响应,如图表1所示,滚降在音频范围内的两端,有一些明显的超声波畸变,可能由于输出变压器的特点。 输出阻抗是温和给一个近似的正,负2dB的频率响应在莱科萨斯虚拟扬声器负载的变化。 总谐波失真加作为权力为1kHz的测试频率输出功能噪声绘制于图2。 它表明,在1kHz时的失真测试频率是合理的低额不到1%上到10W的8欧姆输出8欧姆负载输出(和措施上的4 4欧姆负载同样 - 欧姆输出)。 然而,装载有4欧姆或16欧姆负载8欧姆输出提高或降低失真很大。 总谐波失真加作为频率的函数噪声功率水平在几个图3所示。 中档以上的主要能源带失真量小于1-2为10W的功率输出%或更少。 然而,不失真升起的音频范围的两端可观。 阻尼比在图4所示的频率因子是中等以上的频率范围2.5温和,实际增加的频率在极端一点。 毫不奇怪,在4欧姆输出,阻尼系数约一倍。 在失真和噪声为10W的1kHz的信号频谱图上成为一个8欧姆的输出(图5),信号失真分量是通过与高阶产品的尾矿关闭二次和三次谐波为主的8欧姆负载迅速。 周围有清零了基本的和相当高的数额AC线沿线的嗡嗡声谐振频率120Hz的边带一些。 对宽带噪声超过1mV的金额可能会发出声响与效率为90dB或更多的扬声器。
TOP
33#

Opera Audio M800 Mono

Additional Data

  • Amplifier was measured in both Ultralinear and Triode modes of operation.
  • Measurements were made with 120V AC line voltage.
  • Power output plotted with one channel driven (this is a mono amplifier).
  • Output tube plate current set to 35mA.
  • Gain, triode/ultralinear: 24.2x, 27.7dB/28.5x, 29.1dB.
  • Output noise, 8-ohm load
    • Ultralinear: wideband 0.48mV, -75.4dBW; A weighted 0.145mV, -85.8dBW.
    • Triode: wideband 0.445mV, -76.1dBW; A weighted 0.135mV, -86.4dBW.
  • AC line current draw at idle: 1.25A.
  • Output impedance
    • Ultralinear: 2.1 ohms.
    • Triode: 1.4 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal (triode)
  • 8-ohm load at 1% THD: 13W
  • 8-ohm load at 10% THD: 40W

  • 4-ohm load at 1% THD: 4W
  • 4-ohm load at 10% THD: 43W

  • 16-ohm load at 1% THD: 19W
  • 16-ohm load at 10% THD: 32W
Power output with 1kHz test signal (ultralinear)
  • 8-ohm load at 1% THD: 3.7W
  • 8-ohm load at 10% THD: 70W

  • 4-ohm load at 1% THD: 0.9W
  • 4-ohm load at 10% THD: 72W

  • 16-ohm load at 1% THD: 15W
  • 16-ohm load at 10% THD: 32W
General
Chart 1 shows that this amplifier has a relatively wide bandwidth in excess of 10Hz-100kHz. However, like many tube amplifiers, the output regulation is not too good due to the relatively high output impedance -- shown by the drop in level from open circuit to 4-ohm loading. The "Triode" mode has lower output impedance and, therefore, better output regulation. Chart 2 shows that the "Triode" mode has lower distortion than the "Ultralinear" mode, but with about half the power available. Power output and distortion are best with the rated load on either of the output taps. With a load of half of the rated value, the power output is about the same, but at higher distortion. With a load of twice the rated value, distortion is lower but so is output power. This amp can deliver about 35W in "Triode" mode and 60W in "Ultralinear" mode at about 2-3% distortion over most of the audio range into the rated load. Chart 3, which shows distortion versus frequency, shows the "Triode" mode as having the lowest distortion, and unusually and desirably, the distortion amount is fairly constant with frequency. However, in the "Ultralinear" mode, the distortion at low frequencies rises quite a bit at low frequencies. Damping factor in the two modes is illustrated in Chart 4 with the "Triode" mode having the highest damping factor (lowest output impedance). In Chart 5, the higher harmonics are lower in the triode mode.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading

Triode mode with data taken on the 8-ohm tap

Red line: open circuit
Green line: dummy speaker load
Magenta line: 8-ohm load
Blue line: 4-ohm load

Ultralinear mode with data taken on the 8-ohm tap

Red line: open circuit
Green line: dummy speaker load
Magenta line: 8-ohm load
Blue line: 4-ohm load

Chart 2 - Distortion as a Function of Power Output and Output Loading

Triode mode with data taken on the 8-ohm tap

Top line: 8-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line (red): 8-ohm THD+N
Bottom line: 16-ohm THD+N

Ultralinear mode with data taken on the 8-ohm tap

Top line: 8-ohm SMPTE IM
Second line: 4-ohm THD+N
Third line (red): 8-ohm THD+N
Bottom line: 16-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency

Triode mode with data taken on the 8-ohm tap

8-ohm output loading
Green line: 35W
Blue line: 20W
Magenta line: 5W
Red line: 1W

Ultralinear mode with data taken on the 8-ohm tap

8-ohm output loading
Green line: 35W
Blue line: 20W
Magenta line: 5W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency

Triode and Ultralinear modes both plotted

Damping factor = output impedance divided into 8
Red line: Triode
Magenta line: Ultralinear

Chart 5 - Distortion and Noise Spectrum

Triode mode with data taken on the 8-ohm tap

1kHz signal at 10W into an 8-ohm load

Ultralinear mode with data taken on the 8-ohm tap

1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量放大器在超线性和三极管两种操作模式。
  • 测量是用120V交流电压。
  • 输出功率驱动绘制一个通道(这是一个单声道放大器)。
  • 管板输出电流设置为35毫安。
  • 增益,三极管/超线性:24.2x,27.7dB/28.5x,二十九点一分贝。
  • 输出噪声,8欧姆负载
    • 超线性:宽带0.48mV,- 75.4dBW,一个加权0.145mV,- 85.8dBW。
    • 三极管:宽带0.445mV,- 76.1dBW,一个加权0.135mV,- 86.4dBW。
  • 交流线电流消耗在空闲:1.25A。
  • 输出阻抗
    • 超线性:2.1欧姆。
    • 三极管:1.4欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号(三极管)
  • 8欧姆负载,1%总谐波失真:13W的
  • 8欧姆负载为10%总谐波失真功率:40W

  • 4欧姆负载,1%总谐波失真:4W的
  • 4欧姆负载为10%总谐波失真:43W

  • 16欧姆负载,1%总谐波失真:19W
  • 16欧姆负载为10%总谐波失真:32W
功率输出1kHz的测试信号(超线性)
  • 8欧姆负载,1%总谐波失真:3.7W
  • 8欧姆负载为10%总谐波失真功率:70W

  • 4欧姆负载,1%总谐波失真:0.9瓦
  • 4欧姆负载为10%总谐波失真:72W

  • 16欧姆负载,1%总谐波失真:15W的
  • 16欧姆负载为10%总谐波失真:32W
一般
图1表明,该放大器具有在为10Hz - 100kHz的过剩比较宽的带宽。 然而,像许多管放大器中,输出调节不太好,由于相对较高的输出阻抗 - 由在水平下降,由开路4欧姆负荷所示。在“三极”模式具有较低的输出阻抗,因此,更好的输出调节。 图2表明,“三极”模式比“超线性”模式低失真,但大约一半的可用功率。 输出功率和失真的最好用的水龙头或输出额定负荷。 与一对额定负荷值的一半,功率输出大约是相同的,但在较高的失真。 随着价值两倍的额定载荷,失真度低,但这样的输出功率。 此放大器可提供约在“三极”模式和“超线性”模式60瓦35瓦以上的音频范围为额定负荷最大约2-3%的失真。 图3,这说明与频率失真,显示为具有最低失真的“三极管”模式,并刻意异常,变形的数量也相当与频率的关系。 然而,在“超线性”模式,在低频率的失真非常低的频率上升了一点。 阻尼因子的两种模式图4所示的“三极管”具有最高的阻尼因子(最低输出阻抗)模式。 图表5,高次谐波在三极管模式下。
TOP
34#

Opera Audio Consonance Cyber-10 Signature

Additional Data

  • Measurements were made at 120V AC line voltage with both channels being driven.
  • Measurements made on the left channel with volume control set for 5W/8 ohm on the 8-ohm output for 500mV input signal level and taken on the 8-ohm output unless otherwise noted.
  • Input sensitivity, Lch/Rch: 54.4mV/51.7mV
  • Gain, Lch/Rch: 52.0X, 34.3dB/54.7X, 34.8dB
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination, Lch/Rch: wideband, 0.27mV, -80.4dBW/1.1mV, -68.2dBW; A-weighted, 0.11mV, -88.2dBW/0.12mV, -87.5dBw.
  • AC line current draw at idle: 1.2A.
  • Output impedance at 50Hz: 2.2 ohms.
  • This integrated amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 4.5W
  • 8-ohm load at 10% THD: 11.8W

  • 4-ohm load at 1% THD: 2.2W
  • 4-ohm load at 10% THD: 9.9W
General
The Opera Consonance Cyber-10 Signature is a low-power integrated tube amplifier utilizing a great complement of tubes, including a 12AX7 first tube, a 6SN7 phase-inverter driver, and most interesting of all, a pair of 2A3 directly heated triodes operated in push-pull for output. These 2A3s are of the single-plate variety and made in Russia. I, being interested in tubes for a long time, was more familiar with the more common, dual-plate variety of 2A3s.
When I received the amp for measurement, one of the four output tubes had an open filament. Being determined to listen to this amp, I dug into my old bag of tubes dating back to my high school days and found, to my amazement and relief, exactly one pair of ancient 2A3 tubes. The old tubes worked just fine, and the amp sounded quite musical in my setup. Replacement tubes were obtained from the importer and the measurements were made with the intended tubes installed.
Directly heated triode output tubes frequently have hum balance controls. In the case of the Cyber-10 Signature, I had adjusted these for minimum hum, and the right channel had somewhat more hum, reflected in the wideband number. Normally, if the channels are more or less similar, only one channel's data is shown.
Chart 1 shows the frequency response of the amp with varying loads. As can be seen, the output impedance, as judged by the closeness of spacing between the curves of the open circuit as well as 8-ohm and 4-ohm loading, is of a typical value for tube amplifiers. The variation with the NHT dummy load in the audio range is of the order of +1/-1.5dB. Frequency response as a function of volume control setting was plotted over a range of 0dB down to -60dB, and the response was found to be quite constant over this range. The level tracking of the two channels stayed within about 1.5dB over this range, with the right channel usually being the higher output of the two.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. The amp is well matched to produce the best result with tap loading -- meaning with an 8-ohm load on the 8-ohm output and a 4-ohm load on the 4-ohm output. However, power and distortion are still reasonable with loads of half and double the output-tap value.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at low and high frequencies is very respectable for a low-power integrated amplifier.
Damping factor vs. frequency is shown in Chart 4 and is of a value typical of many tube amplifiers.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. The magnitude of the AC-line harmonics are quite numerous, and intermodulation components of line harmonics with the signal fundamental and harmonics are also very numerous and visible. The standard test level normally used of 10W is into clipping for this amp. Lower-power spectrum results showed a nice, quickly decaying spectrum of harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 2W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 10W
Blue line: 6W
Magenta line: 3W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 8-ohm load

  • 测量是在120V交流线路电压均为驱动渠道。
  • 就测量与音量控制设置为5W的左/ 8欧姆的500mV的输入信号电平为8欧姆输出和8欧姆的输出,除非另有说明,所采取的渠道。
  • 输入灵敏度,廖创兴/ Rch的:54.4mV/51.7mV
  • 增益,廖创兴/ Rch的:52.0X,34.3dB/54.7X,34.8分贝
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端,廖创兴/ Rch的:宽带,0.27mV,-80.4dBW/1.1mV,- 68.2dBW; A加权,0.11mV,-88.2dBW/0.12mV ,- 87.5dBw。
  • AC线在空闲电流消耗:1.2A的。
  • 在50Hz输出阻抗:2.2欧姆。
  • 这种集成放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:4.5条
  • 8欧姆负载为10%总谐波失真:11.8W

  • 4欧姆负载,1%总谐波失真:2.2W
  • 4欧姆负载为10%总谐波失真:9.9W
一般
歌剧院协和数码- 10签名是一种低功率管放大器集成利用极大地补充了管,包括一个12AX7管第一管,6SN7相逆变器驱动程序,最有趣的是,有的2A3直接加热对工作在三极管推挽输出。 这些2A3s是单盘品种,在俄罗斯制造。 我作为兴趣很长一段时间管,更是较常见的,双板2A3s各种熟悉。
当我收到测量放大器,四个输出管一有一个开放的灯丝。 被确定听这放大器,我挖我的旧的管袋可以追溯到我高中时代,发现,我的惊讶和救济,正是一种古老2A3管对。 老管效果很好,而放大器响起了我的设置相当的音乐剧。 更换管道,以搜集有关进口商和测量结果与预期的安装管制成。
直热式三极管输出管道经常有嗡嗡声平衡控制。 在网络- 10签名的情况下,我调整了最低哼这些,右声道了较为哼哼,在宽带数字反映出来。 通常,如果渠道都或多或少类似的,只是一个通道的数据显示。
图1显示了用不同的负载放大器的频率响应。 可以看出,输出阻抗,由之间的开路曲线间距以及8欧姆和4欧姆负荷亲密判断,是一个管放大器的典型值。 与音频范围内的莱科萨斯假负载变化的1 / - 1.5dB的秩序。 频率作为一种功能性反应的音量控制设置,绘制了一个范围为0dB到- 60dB的,反应被认为是在这个范围内相当恒定。 该级的两个通道内逗留约1.5dB的跟踪在这个范围内,与右声道通常是两个更高的输出。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 该放大器匹配良好,生产用自来水装载最好的结果 - 与一对8欧姆输出8欧姆负载和一个4欧姆输出4欧姆负载的意义。 但是,电源和失真仍与半负荷合理和双输出抽头的价值。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 崛起中的低失真和高频率的数量十分可观的低功耗集成放大器。
阻尼随频率变化的因素是显示在图4和第一个值,许多典型的就是管放大器。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 将AC -线路谐波幅度都相当多,与信号的基本路线和谐波互调谐波成分也非常多,而且可见。 标准测试水平通常使用的10W的功放成这个剪辑。 低功率谱结果显示,美观大方,快速的谐波衰减谱。
TOP
35#

Oracle Audio SI 1000

Additional Data

  • Measurements were made at 120V AC line voltage with both channels driven; measurements made on left channel with unbalanced input unless otherwise noted.
  • This integrated amplifier does not invert polarity.
  • AC line current draw:
    • at idle: 0.72A
    • in standby: 0.32A
  • Input sensitivity for 1W output into 8 ohms, volume at maximum: 49.2mV
  • Input impedance @ 1kHz:
    • balanced inputs: 47.0k ohms
    • unbalanced inputs: 24.0k ohms
  • Output impedance at 50Hz: 0.4 ohms
  • Gain, output voltage divided by input voltage, volume at maximum: 57.2X, 35.2dB
  • Output noise, 8-ohm load, 1k-ohm input termination, Lch/Rch
    • Volume control at reference position
      • wideband: 0.65mV, -72.8dBW / 0.68mV, -72.4dBW
      • A weighted: 0.28mV, -80.1dBW / 0.35mV, -78.2dBW
    • Volume control full clockwise
      • wideband: 1.39mV, -66.2dBW / 1.37mV, -66.3dBW
      • A weighted: 0.59mV, -73.6dBW / 0.62mV, -73.2dBW
    • Volume control full counterclockwise
      • wideband: 0.60mV, -73.5dBW / 0.66mV, -72.6dBW
      • A weighted: 0.27mV, -80.4dBW / 0.34mV, -78.4dBW

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 141.3W
  • 8-ohm load at 10% THD: 173.1W

  • 4-ohm load at 1% THD: 213.4W
  • 4-ohm load at 10% THD: 266.6W
General
The Oracle SI 1000 is a remote-controlled, medium-power solid-state integrated amplifier. Overall gain of this unit is about right for a modern integrated amplifier -- a bit higher than average power-amp-only gain.
Chart 1 shows the frequency response of the amp with varying loads. This plot was made with the reference volume-control position as set for 0.5V input to produce 5W output into an 8-ohm load. The high-frequency response is moderately wide, with an approximate 3dB-down point of about 60kHz. Output impedance as judged by the closeness of spacing between the curves of open-circuit, 8-ohm and 4-ohm loading is somewhat high for solid-state power amplifiers. Still, the variation with the NHT dummy speaker load is only of the order of +/- 0.25dB -- it’s not going to make much of an audible difference with most speakers. Of note, the high-frequency roll-off shape is nicely independent of loading. The frequency response of this unit was quite independent of volume-control setting. Tracking between channels was within about 0.1dB from full up to -70dB of attenuation.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. Not typical of most solid-state amplifiers, distortion maximizes right in the typical listening range of power output, in the 1-5W range.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3 for 4-ohm loading. The amount of rise in distortion at high frequencies is quite pronounced, with some rise at the very low frequencies at 200W output.
Damping factor vs. frequency is shown in Chart 4 and is of a value and nature not typical of most power amplifiers -- being relatively low and uniform over most of the audio range. As mentioned earlier, the output impedance is relatively high for a solid-state power amplifier, yielding a damping factor of about 20.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal into 8 ohms is plotted in Chart 5. The magnitudes of the AC-line harmonics are moderately high and complex in nature. However, intermodulation components of line harmonics with signal harmonics are low. Signal harmonics consist of a tapering off spectrum of even and odd harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Green line: 200W
Cyan line: 160W
Blue line: 120W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load

附加数据

  • 测量是在120V交流渠道,既驱动电压;在左声道输入测量作出的不平衡,除非另有说明。
  • 这种集成放大器的极性不能倒置。
  • 交流线路电流:
    • 在怠速:0.72A
    • 在待机状态:0.32A
  • 1W输出的输入灵敏度为8欧姆,音量开到最大:49.2mV
  • @ 1kHz的输入阻抗:
    • 平衡式输入:47.0k欧姆
    • 不平衡输入:24.0k欧姆
  • 在50Hz输出阻抗:0.4欧姆
  • 增益,输出电压的输入电压,在最大音量分为:57.2X,35.2分贝
  • 输出噪声,8欧姆负载,1K的欧姆输入终端,廖创兴/ Rch的
    • 音量控制在基准位置
      • 宽带:0.65mV,- 72.8dBW / 0.68mV,- 72.4dBW
      • A加权:0.28mV,- 80.1dBW / 0.35mV,- 78.2dBW
    • 音量控制旋钮顺时针满
      • 宽带:1.39mV,- 66.2dBW / 1.37mV,- 66.3dBW
      • A加权:0.59mV,- 73.6dBW / 0.62mV,- 73.2dBW
    • 音量控制逆时针
      • 宽带:0.60mV,- 73.5dBW / 0.66mV,- 72.6dBW
      • A加权:0.27mV,- 80.4dBW / 0.34mV,- 78.4dBW

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:141.3W
  • 8欧姆负载为10%总谐波失真:173.1W

  • 4欧姆负载,1%总谐波失真:213.4W
  • 4欧姆负载为10%总谐波失真:266.6W
一般
Oracle的硅1000是一个远程控制,中等功率固态放大器集成。 本机的总增益是关于一个现代化的综合放大器的权利 - 一个比平均功率放大器仅获得更高。
图1显示了用不同的负载放大器的频率响应。 此图写了与参考音量控制位​​置为0.5V的输入,以产生为8欧姆负载5W输出设置。 高频率响应略宽,有一个近似3dB的减约60kHz点。 输出阻抗之间所开路,8欧姆和4欧姆负荷曲线间距判断是有点接近固态功率放大器高。 尽管如此,与莱科萨斯虚拟扬声器负载变化只是秩序+ / - 0.25分贝 - 它不会取得多大的区别与大多数发言者发声。 值得注意的是,高频滚降形状是很好的装载无关。 该单位的频率响应相当音量控制设置无关。 通道间跟踪了约0.1dB的范围内从全高达- 70dB的衰减。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 并非最固态放大器的典型,就在最大化失真输出功率的典型听力范围内,在1 - 5W的范围。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示为4欧姆负载。 在高频率的失真量是相当明显的上升,一些在非常低的频率在200W的输出上升。
阻尼随频率变化的因素是显示在图4和第一个值和性质不典型大多数功率放大器是 - 统一是相对较低,在大多数的音频范围。 如前所述,输出阻抗是相对固态功率放大器高,收益率约20阻尼系数。
阿的谐波失真和10W的1kHz的测试信号噪声残留为8欧姆谱绘制于图5。 在交流线路谐波的幅度适度高,性质复杂。 然而,与线路谐波互调信号的谐波成分低。 信号谐波组成的偶数和奇数谐波频谱逐渐减少。
TOP
36#

Orpheus Laboratories Three S Stereo

Additional Data

  • Measurements were made with 120V AC line voltage.
  • Power output and distortion plotted with both channels driven.
  • Test signal applied to unbalanced inputs unless otherwise noted.
  • Gain, unbalanced input/balanced input: 34.9x, 30.9dB/17.2x, 24.7dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.348mV, -78.2dBW; A weighted 0.087mV, -90.2dBW.
  • Output noise, 8-ohm load, balanced input, 600-ohm input termination: wideband 0.295mV, -79.6dBW; A weighted 0.080mV, -91.0dBW.
  • AC line current draw at idle: 0.367A.
  • Output impedance at 50Hz: 2.89 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 40W

  • 4-ohm load at 1% THD: 62W
General
The Orpheus Three S design purports to deliver constant power to a varying impedance speaker load instead of the usual constant voltage. With either a constant voltage or constant current source to a speaker, the delivered power will not be constant as a function of frequency. Some output impedance between zero and infinite could deliver a constant power. In measuring the Atma-Sphere MA-1 Mk II amp some while ago, I found that that design had an output impedance of about 10 ohms. Designer Ralph Karsten went to considerable trouble to show that his amp delivered quite constant power into my NHT dummy speaker load. In short, the Orpheus Three had an output impedance of about 2.9 ohms measured both from the data of Chart 1 and with the 1A current-insertion method to generate Chart 4. Therefore, the amp did not generate constant power as a function of loading. As I have stated previously, not constant power, but constant voltage out of a power amplifier as a function of varying speaker impedance loads is what the majority of speaker manufacturers assume to drive their speakers.
Measurements were made through the unbalanced inputs. Results were essentially the same through the balanced inputs. Chart 1 shows the frequency response of the amp with varying loads. As discussed in past measurements, a high output impedance will have the effect of causing the designed frequency response for a speaker that was designed for constant voltage to vary by as much as the voltage varies when driving that speaker. As can be seen in Chart 1, in the case of the NHT dummy load, that variation is almost +/- 2dB. Chart 2 illustrates how total harmonic distortion plus noise versus power varies for a 1kHz and SMPTE IM test signals and amplifier output load. As can be seen, attainable power is greater for the 4-ohm load, as is usual for most power amplifiers. Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Of interest, all powers levels below clipping seem to have the same distortion at 20kHz. Damping factor versus frequency is shown in Chart 4. A spectrum of the harmonic distortion and noise residue is plotted in Chart 5. Both the AC line and signal frequency have a rich series of harmonics.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Magenta line: open circuit
Red line: 8-ohm load
Blue line: 4-ohm load
Green line: NHT dummy speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Red line: 1W (overlaps with magenta)
Magenta line: 10W (overlaps with red)
Blue line: 30W
Cyan line: 50W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

  • 测量是用120V交流电压。
  • 输出功率和失真策划既带动渠道。
  • 测试信号施加到非平衡输入,除非另有说明。
  • 增益,非平衡输入/平衡输入:34.9x,30.9dB/17.2x,24.7分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.348mV,- 78.2dBW,一个加权0.087mV,- 90.2dBW。
  • 输出噪声,8欧姆负载,平衡输入,600欧姆的输入端接:宽带0.295mV,- 79.6dBW,一个加权0.080mV,- 91.0dBW。
  • 交流线电流消耗在空闲:0.367A。
  • 在50Hz输出阻抗:2.89欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真功率:40W

  • 4欧姆负载,1%总谐波失真:62W的
一般
奥菲斯三S设计的意图,提供恒定的功率也不同阻抗的扬声器负载电压而不是通常的常数。无论使用哪种恒定电压或恒定电流源到扬声器,输出功率恒定频率将不会作为一个函数。一些与无限之间的零输出阻抗可以提供恒定的功率。 在衡量 阿特玛球的MA - 1马可福音二放一些以前,我却发现,设计了一个10欧姆的输出阻抗约。 设计师拉尔夫卡斯滕到 相当大的麻烦,显示 他的放大器提供虚拟扬声器负载相当恒定的功率为我的莱科萨斯。 总之,奥菲斯三人一2.9欧姆输出阻抗测量约4无论从图表中的数据1和1A电流的插入方法生成图表。因此,放大器没有产生装货恒功率功能为。 正如我前面提到过,没有恒功率,恒功率放大器的电压,但出了作为一个功能不一的扬声器负载阻抗是扬声器的制造商承担大部分的扬声器来驱动。
通过测量是不平衡的投入。 结果基本上是相同的,通过平衡输入。 图1显示了用不同的负载放大器的频率响应。 一如以往的测量讨论,高输出阻抗会导致有一个恒定的电压,这对于设计不尽相同只要电压远扬声器所设计的频率响应变化的影响开车时该扬声器。 可以看出,图一,在莱科萨斯假负载情况下,该变异几乎是+ / - 2dB的。 图2说明了总谐波失真加噪声功率比为1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 可以看出,可实现功率为4欧姆负载更大,因为是常见的,最功率放大器。 总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 有趣的是,以下限幅一切权力层次似乎有20kHz的歪曲了一样。 阻尼频率因子与图4所示。 阿的谐波失真和噪声残留谱绘制于图5。 无论是交流线路和信号频率有一系列丰富的谐波。
TOP
37#

Odyssey Audio Khartago Stereo

  • Measurements were made with 120V AC line voltage.
  • Power output and distortion plotted with both channels driven.
  • Gain: 37.0x, 31.4dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.527mV, -74.6dBW; A weighted 0.105mV, -88.6dBW.
  • AC line current draw at idle (warmed up): 0.6A.
  • Output impedance at 50Hz: 0.1 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 114W

  • 4-ohm load at 1% THD: 187W
General
The Odyssey Audio Khartago is a medium-power solid-state design with typically wide bandwidth and low output impedance.
Chart 1 shows the frequency response of the amp with varying loads. As can be seen, the output impedance, as judged by the closeness of spacing between the curves of open circuit, 8-ohm, and 4-ohm loading is quite low. The variation with the NHT dummy load is about +/-0.1 dB, not of great consequence. Chart 2 illustrates how total harmonic distortion plus noise versus power varies for a 1kHz and SMPTE IM test signals and amplifier output load. As can be seen, attainable power is greater for the 4-ohm load as is usual for most power amplifiers. When the amount of distortion is fairly constant over a wide range of power, as is the case here, it is usually indicative of a dominance of even harmonic distortion. Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at high frequencies is relatively low, a desirable characteristic. Note how the amount of distortion here is fairly constant with power level over much of the frequency range. There is a beat frequency phenomenon in this amplifier between the 120Hz power-supply ripple frequency and the signal-frequency distortion components as evidenced by the peak/dip/peak in the chart in this frequency range. Damping factor versus frequency is shown in Chart 4. Unusual here is the falloff in the damping factor at low frequencies. A spectrum of the harmonic distortion and noise residue is plotted in Chart 5. The AC-line harmonics are quite prominent in this chart. Note that the even harmonics of the 1kHz test frequency, the second (2kHz), fourth (4kHz), and sixth (6kHz), are dominant as expected from the earlier comments on Chart 2.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Magenta line: open circuit
Red line: 8-ohm load
Blue line: 4-ohm load
Cyan line = NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


4-ohm output loading
Cyan line: 150W
Blue line: 80W
Magenta line: 20W
Red line: 2W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 4-ohm load

  • 测量是用120V交流电压。
  • 输出功率和失真策划既带动渠道。
  • 增益:37.0x,三十一点四分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.527mV,- 74.6dBW,一个加权0.105mV,- 88.6dBW。
  • 交流线电流在空闲(热身):0.6A。
  • 在50Hz输出阻抗:0.1欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:114W

  • 4欧姆负载,1%总谐波失真:187W
一般
奥德赛音频Khartago是一个中等功率的固态与典型宽带宽和低输出阻抗设计。
图1显示了用不同的负载放大器的频率响应。 可以看出,输出阻抗,作为判断之间开路,8欧姆,4欧姆负荷曲线间距接近是相当低的。 用假负载变化莱科萨斯约+ / -0.1分贝不是很大的后果。 图2说明了总谐波失真加噪声功率比为1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 可以看出,可实现功率为4欧姆负载的是常见的,最功率放大器更大。当扭曲的数量也相当多宽的功率范围内保持恒定,因为这里的例子,它通常是一种优势,甚至谐波失真的指标。 总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 在高频率的增加额是失真比较低,一个理想的特征。 请注意这里的失真量相当与供电频率范围多水平不变。 在此有一个拍频放大器的120Hz之间的电源纹波频率与信号频率失真,由峰证明/文凭/在这个频率范围图中元件的峰值现象。 阻尼频率因子与图4所示。 这里是不寻常的低频阻尼因子衰减。 阿的谐波失真和噪声残留谱绘制于图5。 在交流线路谐波在此图表是相当突出。 请注意,1kHz的测试频率的偶次谐波,第二个(2kHz范围),第四届(为4kHz),六(6kHz的),是占据统治地位从图2中的预期早些时候的评论。
TOP
38#

PS Audio HCA-2 Stereo

  • Measurements were made with 120V AC line voltage with both channels driven (worse of two channels plotted).
  • Output noise, 8-ohm load: wideband 27.5mV, -40.2dBW (residual high-frequency switching noise at about 500kHz); A weighted 0.30mV, -79.5dBW.
  • AC line current draw at idle: 0.24A.
  • Output impedance (measured by an injection of a constant 1A of current at 50Hz): 0.14 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 150W
  • 8-ohm load at 10% THD: 180W

  • 4-ohm load at 1% THD: 250W
  • 4-ohm load at 10% THD: 310W
General
Measurements were conducted on the HCA-2 with balanced inputs. Results with unbalanced input feed were substantially the same. Chart 1 shows the effect of loading on the frequency response at the 1W level. Like all switching power amplifiers, the response at the very high end of the audio band and beyond is influenced by the load because of the necessary LCR low-pass filters in the amplifier's output circuit. However, this is not likely to have much effect on the perceived frequency response with most speakers. The response variation shown in Chart 1 is perhaps less than seen in other designs. The frequency response with the NHT load is almost perfect. The amplifier's output impedance in the audio band is low enough that little variation of response with speaker impedance variation should be expected. Total harmonic distortion plus noise and SMPTE IM distortion is plotted vs. power output and loading in Chart 2. In order to not have the small amount of the switching-frequency residual at the output affect this data at low power, the special sharp Audio Precision Apogee 20kHz low-pass filter was used for this measurement. Amount of distortion is moderate in amount -- more in the arena of many tube power amplifiers rather than very-low-measuring solid-state designs. Total harmonic distortion plus noise vs. frequency at several power levels is shown in Chart 3. The amount of distortion does rise considerably with frequency. In this chart, the measurement bandwidth was 80 kHz to pass most of the highest-amplitude harmonics at the high end of the audio range. Chart 4 shows that the damping factor is reasonably high in the HCA-2 leading to good speaker damping. Chart 5 shows a spectrum of the harmonic distortion components for a 1kHz 10W signal with 8-ohm loading. The even harmonics are considerably lower than the odd harmonics indicating good plus/minus polarity symmetry. However, the amount of odd harmonic distortion is fairly high.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Blue line: open circuit
Red line: 8-ohm load
Magenta line: 4-ohm load
Cyan line: NHT dummy speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line (red): 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Green line: 130W
Blue line: 50W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load


  • 测量是用120V交流渠道,既驱动电压(两个通道更糟绘制)。
  • 输出噪声,8欧姆负载:宽带27.5mV,- 40.2dBW(残高频开关噪声大约为500kHz); A加权0.30mV,- 79.5dBW。
  • 交流线电流消耗在空闲:0.24A。
  • 输出阻抗(由一个一个固定的1A电流测量注射在50Hz):0.14欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真功率:150W
  • 8欧姆负载为10%总谐波失真:180瓦

  • 4欧姆负载,1%总谐波失真:250瓦
  • 4欧姆负载为10%总谐波失真:310W
一般
进行测量的安徒生- 2平衡输入。 非平衡输入提要结果大致相同。 图1显示了在上1W的水平频率响应负载的影响。 像所有的开关电源放大器,在音频频段非常高端及以后所影响的反应是必要的,因为华润低通在放大器的输出电路的滤波器负载。 但是,这不太可能对大多数发言者认为影响不大的频率响应。 响应变化图1所示的设计或许比其他看到较少。 莱科萨斯与加载频率响应几乎是完美的。 该放大器在音频频带的输出阻抗足够低,与扬声器的阻抗变化的响应应该预计变化不大。 总谐波失真加噪声和SMPTE的IM失真功率输出和对比图2载入中绘制。 为了不具有的开关频率在输出端的残余量小的影响在低功率这个数据,特别尖锐的音频精度远地点20kHz低通滤波器该测量。 变形量适中的金额 - 在许多管功率放大器,而不是非常低的测量固态设计的舞台上。 总谐波失真加在多种功率与频率的噪音水平在图3所示。 失真的值不随频率大大上升。 在这个图中,测量带宽为80 kHz到通过在音频范围的高端的最高幅度谐波最多。 图4表明,阻尼因素是合理的安徒生- 2高阻尼导致好的演讲者。 图5显示了谐波失真元件一个1kHz 10W的8欧姆载荷信号的频谱。 甚至有较大的谐波,除了说明良好的加/减极性对称的奇​​次谐波低。 然而,奇次谐波失真的数量也相当高。
TOP
39#

Raysonic SP-100 Integrated

onal Data

  • Measurements were made at 120V AC line voltage with both channels driven and with volume control fully up unless otherwise noted.
  • Input sensitivity for 1W output into 8 ohms: 177mV.
  • Gain, output voltage divided by input voltage, volume at maximum: 16.0X, 24.1dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination, volume control fully up (clockwise position, worst case): wideband 0.37mV, -77.7dBW; A weighted 0.15mV, -85.5dBW.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination, volume control fully down (counterclockwise position): wideband 0.23mV, -81.8dBW; A weighted 0.08mV, -91.0dBW.
  • AC line current draw at idle: 1.77A.
  • Output impedance at 50Hz: 0.77 ohms.
  • This integrated amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 40W
  • 8-ohm load at 10% THD: 60W

  • 4-ohm load at 1% THD: 28W
  • 4-ohm load at 10% THD: 44W
General
The Raysonic SP-100 is a medium-power stereo push-pull tube integrated amplifier utilizing one pair of EL34 output tubes in each channel. This integrated amp has a digitally controlled volume control and selector switch ahead of the power amplifier.
Chart 1 shows the frequency response of the amp with varying loads. This amp has a nicely controlled high-frequency response with some way-out-of-band output-transformer aberrations above 100kHz. The output impedance, as judged by the closeness of spacing between the curves of open circuit, 8-ohm, and 4-ohm loading over most of the audio range is somewhat lower than typical for tube power amplifiers. The variation with the NHT dummy load in the audio range is about +/-0.7dB. Of academic interest with this design, the output impedance actually becomes 0 at 80kHz and becomes negative between 80kHz to about 160kHz where it becomes positive again.
Chart 2 illustrates how total harmonic distortion plus noise versus power varies for 1kHz and SMPTE IM test signals and amplifier output load. As is usual for most tube power amplifiers, the power at the onset of clipping is greatest for tap "matched" impedance, in this case, 8-ohm loading on the 8-ohm output.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at low and high frequencies is admirably low in this design.
Damping factor versus frequency is shown in Chart 4 and is amazingly constant over the whole audio range.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. AC-line harmonics are numerous but decrease in magnitude as the harmonic number goes up. The 120Hz line harmonic does intermodulate quite noticeably with the nulled-out 1kHz signal fundamental frequency. Some further intermodulation can be seen on the skirts of the second- and third-signal harmonic also. The decay of the amplitude of the signal harmonics is quite uniform and is judged to be desirable in some quarters.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line: NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 10W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 30W
Blue line: 20W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into a 8-ohm load

  • 测量是在120V交流渠道,既驱动电压和音量控制充分,除非另有说明。
  • 1W输出的输入灵敏度为8欧姆:177mV。
  • 增益,输出电压的输入电压,在最大音量分为:16.0X,24.1分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端,音量控制完全达到(顺时针方向的位置,最坏的情况):宽带0.37mV,- 77.7dBW,一个加权0.15mV,- 85.5dBW。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端,音量控制完全按下去(逆时针位置):宽带0.23mV,- 81.8dBW,一个加权0.08mV,- 91.0dBW。
  • 交流线电流消耗在空闲:1.77A。
  • 在50Hz输出阻抗:0.77欧姆。
  • 这种集成放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真功率:40W
  • 8欧姆负载为10%总谐波失真率:60W

  • 4欧姆负载,1%总谐波失真:28W
  • 4欧姆负载为10%总谐波失真:44宽
一般
该Raysonic的sp - 100是一种中等功率的立体声推挽功放管利用一个集成在每个输出通道EL34管对。 这种集成的放大器有一个数字控制音量控制和选择开关提前功率放大器。
图1显示了用不同的负载放大器的频率响应。 这种放大器具有一些出路带外输出变压器很好地控制畸变以上100kHz的高频率响应。 输出阻抗,如之间开路,8欧姆,4欧姆负荷曲线间距以上的音频范围最亲密判断是有点比管功率放大器典型的低。 与音频范围内的假负载变化莱科萨斯约+ / -0.7分贝。 与此设计学术兴趣,输出阻抗实际上变成80kHz的0,并成为在80kHz的负面之间约160kHz它变得积极了。
图2说明了总谐波失真加噪声功率比和SMPTE即时1kHz的测试信号和放大器的输出负载变化。 正如大多数管功率放大器往常一样,在权力的削波在这种情况下为龙头“匹配的”阻抗最大,8欧姆的8欧姆输出负载。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 崛起中的低失真和高频率的金额为低,这样的设计令人钦佩。
阻尼频率因子与图4所示,是令人惊讶的在整个音频范围不变。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 交流线路的谐波很多,但增加的幅度减小,谐波数上升。 在120Hz的线路谐波​​不intermodulate相当明显的清零出1kHz的信号基频。 一些进一步的互调可以看出,对第二代和第三谐波信号也裙子。 该信号的谐波振幅衰减是相当均匀,被判定为在某些方面可取的。
TOP
40#

Rogue Audio Atlas Stereo

  • Measurements were made at 120V AC line voltage with both channels being driven.
  • Gain: 20.8x, 26.4dB.
  • Output noise, 8-ohm load, unbalanced input, 1k-ohm input termination: wideband 0.800mV, -71.0dBW; A weighted 0.418mV, -76.6dBW.
  • AC line current draw at idle: 1.82A.
  • Output impedance at 50Hz: 0.73 ohms.
  • This amplifier does not invert polarity.

Measurements Summary

Power output with 1kHz test signal
  • 8-ohm load at 1% THD: 78W
  • 8-ohm load at 10% THD: 89W

  • 4-ohm load at 1% THD: 29W
  • 4-ohm load at 10% THD: 75W
General
The Rogue Audio Atlas is a medium-power push-pull stereo tube amplifier utilizing one pair of KT77 output tubes in each channel. I don’t recall seeing KT77 tubes before, but their plate structure looks like those of EL34 output tubes.
Chart 1 shows the frequency response of the amp with varying loads. As can be seen, the out-of-band high-frequency response has some complex peaking going on. The output impedance over most of the audio range, as judged by the closeness of spacing between the curves of open circuit, 8-ohm, and 4-ohm loading, is lower than typical for tube power amplifiers. The variation with the NHT dummy load in the audio range is about +/-0.5dB.
Chart 2 illustrates how total harmonic distortion plus noise vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load. This design, with its single output connection for speaker loads, is more optimized for 8 ohms than 4 ohms. As can be seen, the power attainable is greater for 8-ohm loading for a given distortion amount. For lower-impedance speakers, the amp has 4-ohm taps that can be connected to the hot output terminals instead of the default 8-ohm taps.
Total harmonic distortion plus noise as a function of frequency at several different power levels is plotted in Chart 3. Amount of rise in distortion at low and high frequencies is quite pronounced, but not atypical for many tube power amps.
Damping factor vs. frequency is shown in Chart 4. It rolls off at low and high frequencies quite a bit more than for other measured tube amplifiers. This can be inferred from Chart 1 where the spacing between the curves increases for low and high frequencies.
A spectrum of the harmonic distortion and noise residue of a 10W 1kHz test signal is plotted in Chart 5. AC-line harmonics are quite numerous but reasonably low in magnitude, and intermodulation components of line harmonics with signal harmonics are also reasonably low but visible. The principal signal harmonics are second and third, with the remaining harmonics more than 20dB below the level of the second and third harmonic.

Chart 1 - Frequency Response of Output Voltage as a Function of Output Loading


Red line: open circuit
Magenta line: 8-ohm load
Blue line: 4-ohm load
Cyan line = NHT dummy-speaker load

Chart 2 - Distortion as a Function of Power Output and Output Loading


(line up at 20W to determine lines)
Top line: 4-ohm SMPTE IM
Second line: 8-ohm SMPTE IM
Third line: 4-ohm THD+N
Bottom line: 8-ohm THD+N

Chart 3 - Distortion as a Function of Power Output and Frequency


8-ohm output loading
Cyan line: 60W
Blue line: 30W
Magenta line: 10W
Red line: 1W

Chart 4 - Damping Factor as a Function of Frequency


Damping factor = output impedance divided into 8

Chart 5 - Distortion and Noise Spectrum


1kHz signal at 10W into an 8-ohm load

  • 测量是在120V交流线路电压均为驱动渠道。
  • 增益:20.8x,二十六点四分贝。
  • 输出噪声,8欧姆负载,不平衡输入,1K的欧姆输入终端:宽带0.800mV,- 71.0dBW,一个加权0.418mV,- 76.6dBW。
  • 交流线电流消耗在空闲:1.82A。
  • 在50Hz输出阻抗:0.73欧姆。
  • 该放大器的极性不能倒置。

测量综述

功率输出1kHz的测试信号
  • 8欧姆负载,1%总谐波失真:78W
  • 8欧姆负载为10%总谐波失真:89W

  • 4欧姆负载,1%总谐波失真:29W
  • 4欧姆负载为10%总谐波失真:75W的
一般
盗贼音频Atlas是一个中等功率推挽立体声功放管利用每一个KT77管双声道输出。 我不记得看​​到KT77管过,但他们的板式结构像EL34输出管的表情。
图1显示了用不同的负载放大器的频率响应。 可以看出,出带外高频响应有一些复杂的调峰回事。 在以上的音频范围最输出阻抗,如之间开路,8欧姆,4欧姆负荷曲线间距接近判断,是较典型的低功率放大器管。 与音频范围内的假负载变化莱科萨斯约+ / - 0.5dB的。
图2说明了总谐波失真加噪声与功率1kHz的测试信号和SMPTE的IM和放大器的输出负载变化。 这与它的扬声器负载单输出接口设计,更优化的8比4欧姆欧姆。 可以看出,功率可以达到为8欧姆的负荷更大的一个给定的失真量。 对低阻抗的扬声器,放大器有4欧姆,可连接到热输出端子,而不是默认的8欧姆水龙头水龙头。
总谐波失真加作为频率的函数噪声功率水平在几个不同的是在图3所示。 崛起中的低失真和高频率的金额是相当明显,但对于许多非典型功放管。
阻尼随频率变化的因素是列于图4。 它滚降低,高频率相当多的比其他测量管放大器。 这可以从图1,其中推断之间的低和高频率的曲线增加间距。
阿的谐波失真和10W的1kHz的测试信号噪声频谱残留绘制于图5。 交流线路的谐波幅度相当众多,但在合理的低,以及与线路谐波互调信号的谐波成分也相当低,但可见。 主要信号谐波第二和第三位,超过以下的第二和第三级谐波20dB的剩余谐波。
TOP
发新话题 回复该主题