发烧论坛

注册

 

发新话题 回复该主题

发现一个好网站 [复制链接]

查看: 4654|回复: 20
1#
http://www.nju520.com/bbs/index.asp
分享 转发
TOP
2#

对人声音色的调节

<--StartFragment -->                                                           对人声音色的调节

<--StartFragment -->

无论人声、歌声,还是乐器的声音,它们都不是一个单音,而是一个复合音。也就是由声音的基音和一系列的泛音所构成。这些泛音都是基音频率的位数,物理学叫分音,电声学叫谐波,音乐中叫泛音。它对音色的特性有非常重要的影响。这些泛音的数量和泛音幅茺的不同构成音色的频率特性曲线。这条曲线就体再了音色的表现力。例如,钢琴的最低音频率是27.5Hz,最高音频率是4186Hz,而钢琴有十几个泛音,它的高频可达 10kHx~20kHz,一般可测到16个泛音或24个泛音。这些泛音可分为低频泛音、中频泛音和高频泛音,。如果低频泛音的幅度较强,音色就表现得混厚;中频泛音的幅度比较强,音色就表现得圆润、自然、和谐;高频泛音的幅度比较强,音色就表现得明亮、清透、解析力强。

频谱曲线,就是将音色的各泛凌晨幅度的顶点在坐标上连接起来,这个包路线就是这个凌晨色的频谱曲线。

一个音色的频谱曲线各不相同,这和发声体的物质结构、状态和发声的力度以及共振体的不同而各不相同。

什么是最佳的音色呢?根据意大利美声学的观点,就是将基音到第16个泛音的强度在坐标上连成一条直线,这条直线就被称为最佳美声线,如图2所示。那么,哪个音色的频率特性曲线越接近这条直线,哪个音色的低、中、高频泛音的比例也最为均衡,其音色的艺术表现力也最为尚佳。在对人声的美化、修饰上,可以通过调音台上面的输入通道中的四段均衡器,对音色进行频率处理,来提高音色的艺术表现力。调音台中的四段均衡器分为的4个频段,根据德车柏林音乐研究所资料介绍,它们是:

HF:6-16 kHz,影响音色的表现力、解析力。

MID HF:600Hz~6 kHz,影响音色的明亮度、清晰度。

MID HF:200~600Hz,影响音色和力茺和结实度。

LF:20~200Hz,影响音色的混厚度和丰满度。

如果高频段频率过弱,其音色就变得色彩、韵味、个性的失落;如果高频段频率过强,音色就会变得尖噪、嘶哑、刺耳。

如果中高频段的频率过弱,音色就变得暗淡、朦胧;如果中高频段的频率过强,其音色就会变得呆板。

如果中低频段的频率过弱,音色会变得空虚、无力、软绵绵的;如果中低频段的频率过强,音色会变得生硬、失去活力。

如果低频段的频率过弱,音色将会变得单薄、苍白;如果低频段的频率过强,音色会变得浑浊不清。

四频段的音色特性如附表所示。

四段均衡器的频率特性


附表:

频段\感觉\状态
人耳的听觉感受

过低
丰满
过高

6-20kHz
韵味失落
色彩鲜明 富于表现力
尖噪、嘶哑刺耳

600Hz-6kHz
暗淡、朦胧
明亮、清晰
呆板

200-600Hz
空虚无力
圆润有力
生硬

20-200Hz
苍白单溥
丰满、混厚深沉
浑浊不清


要使音色有美感,就要泛音丰富、有层次,使歌声有音响美,听众听起来悦耳动听,提升量不易过强。LF(低音)过量,声音混浊不清;HF(高音)过量,声音尖噪刺耳。提升某一频段后,还工考虑对其他频段的影响,要总体地考虑歌声的清晰度和丰满度。

下面介绍几种曲型人声的调音手法。

1 对主持人的调音

主持人多为小姐,其语音特性是清晰流畅,富于表情。她可以影响观众的情绪,因此要把她的音色调好。

低语调型:轻声细语、感情细腻,可采取近距离拾音,话筒与口型很近,这样可增加亲切感,可拾取纤细、微弱的声调。其缺点是存在近讲效应,低频过强。 具体处理手段:

(1)要衰减LF:在100Hz附近衰减6dB左右,最大可衰减到10dB。

(2)对于MID:在250Hz-2kHz提升3-6dB。250Hz-2kHz是语言的重要频段。

(3)对HF:6KHz以上频段衰减3-6dB,以减小高频噪声。

(4)主持人的话筒不要使用效果处理器进行混响(REV)和回声(ECHO)处理,否则会失去真实感和亲切感。

2 对普通人的调音
在歌厅里,有一些歌唱爱好者和业余歌手,也有一些人仅是娱乐消遗,他们多为自己演唱。其中有的人没有受过基本专业训练,缺乏演唱技巧,甚至有噪音不好和不会使用话筒的人,其中,男声易出现喉音和沙哑,女声易出现气息噪音和声带噪声。 为消除以上现象采用如下具体处理手段。

(1)在100Hz以下要切除,消除低频噪声,使音色更加纯净。

(2)在500-800Hz要小量衰减,使音色不要太生硬。

(3)在MID频段提升3-6dB,以增强明亮度,使声音清晰、明亮;

(4)一般人声音都较低,而且缺乏响度,所以音量要开得大一些;亦可把200-300Hz范围频率加以提升,以增加声音的响度。

业余歌手动态范围不大,勿用自动音量控制。

3 对专业歌手的调音

歌厅里常有专业歌手,被朋友邀请到歌厅里做客,有时唱上两曲为朋友和客人们助兴。专业歌手有响亮的歌喉,从发声、叹息、吐字、共鸣演唱基本功都具有一定的水平,而每人都具有一定的演唱风格。

调音要求:

(1)要了解歌手的音色特点、网络流派,高、中、低泛音特性;

(2)要了解歌手的音域宽度和动态范围;

(3)要熟悉歌曲、歌词感情,调凌晨的基本手法要与歌曲的意境直辖市一致;

(4)要注意歌曲的风格和歌手的演唱情绪;

(5)话筒的档次要高:宽频响、小失真、大动态。

演员站在歌坛上,利用歌坛声场,使其音色既有电声,也有自然声。所以,要求歌坛具有良好的声学特性。 女声:

女声在高频部分容易产生S音(嘶声);在7-10KHz衰减了3dB,可以消除S音。

男声:

男声音域比女声低一个8度音程,频率低一个倍频,在100Hz衰减了3dB左右,可以增加清晰度。
TOP
3#

转贴

漫谈失真
<--StartFragment -->

失真是一个令人害怕讨厌的词语,大概是由于它的负面意义吧。一直以来,在电声产品上,失真都是一个重要的指针。但对发烧友来说,失真的真正意义在哪?当一个讯号经过传输,或经过放大,理论上来说要保持和原讯号完完全全不变是不可能的,故此,从技术的角度看,人们总希望它的失真度越小越好。可是近年大部份资深发烧友都会同意,在听感上来说,失真度这指标却不能有效地反映器材的好声程度。如方才说过,既然讯号经过传输或放大不能保持和原讯号完完全全一样,其间一定出现一些变化,这变化是什么呢?大体不外乎“加多”和“减少”。“减少”这概念较容易明白,就是原讯号在传输或放大过程中遗失了一些东西。至于“加多”就有较复杂的内容了,简单来说,就是在传输或放大过程中,衍生出一些既源于原讯号又有别于原讯号的东西。由于这些都是原来没有的,故也只能是失真的部份内容。

在听感上,这类衍生物有时竟会有神奇的作用,譬如说,一些新增的谐波,明显起了像味精的作用,喜欢的人会觉得加了声音更音乐化。又如话筒效应 (microphonic)又提供了一些发烧友用作调音的一种有效手段。甚至乎相移(Phase Shift),这个一听起来都不像好东西的,也可以巧妙地被利用来美化音色。在录音过程中加进激励效果使低音冲激力更大更结实,就是运用了相移这东西。于是有一派以最后听音为取舍的,大叫失真无伤大雅,因为如果把失真换成“美化物”,或“味精”,相信人们对之的抗拒会大为减少,而另一派主要是工程师,却大声说:“数字胜于雄辩”(numbers don't lie)。这样的争论,旷日持久,究竟谁是谁非?这里,我们先不用发烧友这概念,因为一般人可能会倾向于认为发烧友是一些走火入魔的怪人,上面的争论会对什么人有最大的影响呢?答案是喜欢音响的人,这也就是英文的Audiophile,音响爱好者了。

至于谁是音响爱好者,这本身已有很大争议。我想这应该涵盖一切喜欢音响技术和听音乐的人,而不应把它局限于拥有价值连城的Hi End器材的一小撮。相信大部份读者发展音响的爱好,往往都是由喜欢听音乐开始,而最先接触或使用的都会是一些普及的器材。我还记得在小三的时候跟邻家的大孩子一起自己弄矿石收音机,那时候从晶体耳塞传来的音乐,至今难忘,当然晶体耳塞根本不能提供什么低频,可是它的中频瞬变,与及高音的表现,都不是一般晶体管收音机的小扬声器所能比拟。虽然后来才知道AM广播的高频只有7 KHz,连谐波也不会高到10 KHz,但当年的简单矿石收音机却开始了我往后漫长的发烧历程。还记得多年前到香港电台听他们第4台的每月音乐会,在不太大的一个录音间里听钢琴独奏。当时的感受非常美好,音色通透自然。于是心想,如何在钢琴前放两支胆咪,第三支挂高以收取堂音,在混音之前经胆器材调校…想得很远。但当回到现场的乐音中,我很快明白,要重现当时的效果,要重拾当时聆听者的感受,恐怕人类还要作很大的努力。说回先前的争论,以发烧友为主的一派,大可称之为主观主义者 (subjectivist),他们坚持现今对失真的了解和运用还很有限,故失真的测量并不是故事的全部。至于以工程师为主的一派可称为客观主义者 (objectivist),他们坚持以科学手段去测量和区分器材的优劣。现实可能确是由矛盾组成,综观各种失真的被发现,被测量,以至人们找出对策,诸如总谐波失真,当改善它之后,原来带来了TIM瞬态互调失真;又譬如CD的jitter,被发现和对付,还只是很近年的事。至于两派谁对,我想两者各有各对,因为他们争论的不是同一样东西。发烧友其实不自觉在听感上找寻自己的喜好,而工程师却力图客观地找出衡量器材的标准。故此争论的答案是客观测量标准并不能决定主观的个人喜好。

有人喜欢无源前级,有人反对,一下子大家都升级到什么音乐感等抽象名词上争论,其实这只是两种个人喜好的争论,是两种不同的主观立场。说实在一点,他们争论的,其实不是音乐回放的表现,而是两种前级本身的特有音色。究竟讯号经过这两者,有多少“加多”,有多少“减少”,工程师插到其中,又能否排难解纷,抑或是会使浑水更浑。
TOP
4#

几种喇叭的发声方式
目前绝大多数的喇叭都还是用传统的锥盆式单体前后运动发声,比较学术性的说法,这些喇叭叫电动式(Electrokinetic Dynamic)或动圈式(Moving Coil)。早在一八七七年德国西门子的Erenst Vemer就获得了动圈式喇叭的专利,不过真空管迟至一九0七年才正式运用,而爱迪生最早的唱机是唱针直接带动振膜而后经号角放大发声,所以西门子的专利一直没有用上。一九二0年美国奇异公司的Chester Rice与 Edward Kerrog还有爱迪生贝尔公司的P. G.Hokuto才首度发展出实用的动圈式喇叭,七十多年来,除了材料不断改良外,你记为喇叭科技真的有进步吗?下面是几种常见的喇叭发声方式:
一、 动圈式。基本原理来自佛莱明左手定律,把一条有电流的道线与磁力线垂直的放进磁铁南北极间,道线就会受磁力线与电流两者的互相作用而移动,在把一片振膜依附在这根道线上,随著电流变化振膜就产生前后的运动。目前百分之九十以上的锥盆单体都是动圈式的设计。
二、 电磁式。在一个U型的磁铁的中间架设可移动斩铁片(电枢),当电流流经线圈时电枢会受磁化与磁铁产生吸斥现象,并同时带动振膜运动。这种设计成本低廉但效果不佳,所以多用在电话筒与小型耳机上。
三、 电感式。与电磁式原理相近,不过电枢加倍,而磁铁上的两个音圈并不对称,当讯号电流通过时两个电枢为了不同的磁通量会互相推挤而运动。与电磁是不同处是电感是可以再生较低的频率,不过效率却非常的低。
四、静电式。基本原理是库伦(Coulomb)定律,通常是以塑胶质的膜片加上铝等电感性材料真空汽化处理,两个膜片面对面摆放,当其中一片加上正电流高压时另一片就会感应出小电流,藉由彼此互相的吸引排斥作用推动空气就能发出声音。静电单体由於质量轻且振动分散小,所以很容易得到清澈透明的中高音,对低音动力有未逮,而且它的效率不高,使用直流电原又容易聚集灰尘。目前如Martin-Logan等厂商已成功的发展出静电与动圈混合式喇叭,解决了静电体低音不足的问题,在耳机上静电式的运用也很广泛。
五、 平面式。最早由日本SONY开发出来的设计,音圈设计仍是动圈式为主题,不过将锥盆振膜改成蜂巢结构的平面振膜,因为少人空洞效应,特性较佳,但效率也偏低。
六、丝带式。没有传统的音圈设计,振膜是以非常薄的金属制成,电流直接流进道体使其振动发音。由於它的振膜就是音圈,所以质量非常轻,暂能返应极佳,高频响应也很好。不过丝带式喇叭的效率和低阻抗对扩大机一直是很大的挑战,Apogee可为代表。另一种方式是有音圈的,但把音圈直接印刷在塑胶薄片上,这样可以解决部分低阻抗的问题,Magnepang此类设计的佼佼者。
七、 号角式。振膜推动位於号筒底部的空气而工作,因为声音传送时未被扩散所以效率非常高,但由於号角的形状与长度都会影响音色,要重播低频也不太容易,现在大多用在巨型PA系统或高音单体上,美国Klipsch就是老字号的号角喇叭生产商。
八、其他还有海耳博士在一九七三年发展出来的丝带式改良设计,称为海耳喇叭,理论上非常优秀,台湾使用者却很稀少。压电式是利用钛酸等压电材料,加上电压使其伸展或收缩而发音的设计,Pioneer曾以高聚合体改良压电式设计,用在他们的高音单体上。离子喇叭(Ion)是利用高压放电使空气成为带电的质止,施以交流电压后这些游离的带电分子就会因振动而发声,目前只能用在高频以上的单体。飞利浦也曾发展主动回授式喇叭(MFB),在喇叭内装有主动式回授线路,可以大幅降低失真。这些设计目前都不是主流,我们有机会再来探讨。
传真:Hi-End音乐永远无法达成的梦想?
在Hi-End这个名词没出现时,音乐圈内流行的用语是「高传真」(High-Fidelity,简写Hi-Fi)但是到今天我们扪心自问,我们到底离这个标准带有多远?
举个例子:如果你走过大街上,啊到旁边大楼里某一间房间中有人在窗口吹萨克斯风的话,我们就算不知道那是哪里在吹萨克斯风,我们也可以在第一时间内判断出那是个真正地萨克斯风,而不是音响内播放出来的。为什么?那甚至不是立体声,只是一个物体在空气中发出来的声音啊!我想这是因为我们人耳能够捕捉到最细微变化,而在迅雷不及掩耳的速度下将它分析出来。
这们说来,要达到高传真的声音要有那些条件呢?
第一是要有够强的量感。为何一台钢琴在音响上播放总是和真的钢琴有差别?因为真正的钢琴有庞大的体积作为共鸣箱,而一般的喇叭不管如何,很雄厚有像钢琴一般的声体积或表面积(大要忘了真正在发音的是单体而非音箱)。
第二要有够快的反应。喇叭单体虽然已经可以极快速的运动,但是有振膜就有质量,有质量动作就会迟缓,所以,平面振膜发出的声音总是能让人「几乎忘了它的存在」,道理就在这里。但是平面振膜的能量感又不及传统喇叭,为了求强大的能量又要加大振膜面积、加大质量,反应快的优点就没有了,够矛盾吧!
第三当然要有足够的细节。CD所损失的细节大一箭双雕人耳可以查觉的地步,所以至今仍有许多人认为LP较为传真。
第四音质色要能够真。这也是Hi-End一直强调的部份,如果有任何的音染,人耳可以很清楚的辨别出这不是真的。
第五要有够安静的北景。空气中本来就存在许多环境噪音,如果录音中再加入背景噪音,不自然的感觉就出现了。当然还有很多因素不过这些就够我们好好返省了,我们花了大钱投资的器材到底做到了那些?其实以目前的科技来说,这是不可能做到的,首先你使用的录音够不够资格就是个大问题。有什么录音能够让您判别传真度?这里举出一个不错的例子:Sheffield Lab最新推出的A2TB「My Disc」(10045-2-T/极光)这张测试片第十九段中收录了一个人从一数至二十五,虽然是这么简单的片段,却考倒不少系统,可见要「传真」有多难!Coda纯净无杂质的音响特性使很多录音听起来都格外传神,朝向真的目标更进一步了。
单比特与多比特
数码转换器的基本构造,通常分为接收、数码滤波、数/类转换、I/V转换、类比放大等机个部分。以下仅就数码滤波与数/类转换作一浅释。
CD 的取样频率为44.1KHz,这个规格的制定是根据Nyquist的取样理论而来,他认为要把类比讯号变成分立的符号(Discrete Time),取样时的频率至少要在原讯号的两倍以上。人耳的听觉极限约在20KHz,所以飞利浦在一九八二年推出CD时就将其制定为 44.1KHz。取样是将类比讯号换成数码讯号的第一步,但精密度仍嫌粗糙,所以超取样的技术就出现了。一般八倍超取样就等於将取样频率提高到 352.8KHz,一方面提高精度,一方面经过DAC之后产生的类比讯号比较完整,所需的低通滤波器(滤除音取样时产生的超高频)次数与斜率都可大幅降低,相位误差与失真也都会获得巨大改善。不过CD每隔0.00002秒才取样一次,超取样后样本之间就会产生许多空档,这时需要有一些插入的样本来保持讯号完整,而这样的任务就落在数码滤波器身上(Digital Filter)。比较先进的设计是以DSP (Digital Signal Processor)方式计算,以超高取样来求得一个圆滑曲线,例如Krell的64倍超取样,但目前只有Theta、 Wadia、Krell、Vimak拥有这样的技术。另一类数码滤波是事先将复杂程式与在晶片中,有类似DSP的功能,日本Denon、 Pioneer  皆有这样的设计。最普通的方法是利用大量生产的晶片,NPC、Burr-Brown都有成品供应,当然效果会受一些限制。
在数码滤波之后,就进入DAC了,从这里开始有单比特与多比特的区别。多比特是数码讯号通过一个电流分配器(Current Switch),变成大小不同的电流输出,因为数码讯号是二进制关系,所以DAC的电流也以1、2、4、8的倍数排列。每一个比特分别控制一个电源分配器,随著音乐讯号变动,输出电流也跟著改变,接下来是一个速度很快的I/V转换线路,把这些电流变成电压,再接下来经过低通滤波器,完整的类比讯号就出现了。一个二十比特的DAC,其输出电流变化是1,048,576个,解析度已经相当高了。现在最常用的二十比特晶片有Burr-Brown的PCM-63 与改良型PCM-1702,最贵的大概是Ultra-Analog的模组。
比特流(Bitstream)是飞利浦八八年提出的技术,构造很单位。首先二进制的数码讯号进入一个有参考电压的模组中,输入讯号比参考电压高输出就是非曲直,反之则为0;第二个讯号再与第一个讯号比较,更高的就输出1,较低输出0…以此类推。因为它只比较间的大小,所以样本要增加,需要更高的取样频率,从早期的256倍到最新的384倍就是个好例子。只有一个比特的讯号会进入一个叫开关电容(Switched Capacitor)的DAC中,还原成类比讯号。常用的单比特晶片都是飞利浦制品,最早有SAA7320,现在则把SAA7350与TDA1547合在一起称为DAC7线路,Crystal也有类似产品。
何者为优并无定论,唯一可以肯定的是绝大部分高价机种都是多比特设计。
德国喇叭高音比较多?
你如果问德国汽车马力比较大吗?得到的答案应该都是肯定的。德国有无速限的高速公路,时速150公里以下的车通常都还不敢开在内侧车道,偶尔一个闪亮的身影擦身而过,令心理紧张得猛然一缩,不禁要怀疑那急速远去的小黑点是不是马表早就超过200了。在佩服德国人守法的道德之馀(想想台湾如呆有这种高速公路,你敢开吗),对那坚固异常,性能卓越的德国汽车更是崇仰得不得了。
接下来问德国的喇叭高音都比较多吗?这要找答案就不太容易了。基本上,德国人设计音响就跟制造一样,在尽可能范围内要发挥其极限能力。德国汽车开起来安全、耐用,却不一定很舒适。德国音响看起来雄伟、看起来规格优异,却也不一定都很好听。从标示的物理规格来看,任何一对德国25KHz的更不在少数,的确德国喇叭的高频延都比较大厉害。并不是德国人天生都长著一对蝙蝠耳朵,需要听那么高的声音,这样的发展其来有自。
根据Elac老板Wolfgang John的说法,在LP时期因为大部分的黑胶唱片都经过压缩等化,高频的响应曲线绝不平整,要再生极高频的讯号也几乎不可能。任何是都毫不妥协的德国工程师於是想出一个方式,他们把喇叭的高频以上强调一些,刚好和LP的缺陷互补,即使是压缩严重的DG金属刻板LP,在这样的喇叭上播放一样能把失去的空气感找回来。当然,这个时候德国音响多数还是内销,德国人都能接受这样的声音美学。
进入数码时代后,一些来不及,或不知道修改的设计继续贩卖,而再烂的CD唱盘也能重播20KHz的极高频,因此那些德国喇叭就像雪上加霜,让人留下很不好的印象。但是新一代设计的德国音响早就没有这些问题了,他们还是保持非常好的延伸效果,整个频段也修饰得平顺无比。好的德国喇叭在延伸之外,细致的质感与高雅的韵味也是加紧的民族很难学得来的,目前只有一些廉价产品受成本所限,比较无法考虑到「美」的层次。附带要说的是,德国人所标列出来的规格你最好相信,他说有30Hz的低频延伸,就不会缩水成40Hz;他说有100 瓦的输出功率,也肯定不会让你漏气。德国喇叭高音比较多吗?不多!不多!说不定是别人太少了呢。
有关同轴喇叭
在任何一种平面振膜喇叭(铝带、静电、音圈贴覆式)上,由於高频到低频发声动作都是同时进行的(如果有高低分音又另当别论),发出来的声波像一条线一样往前方扩散,我们称之为「线音源扬声器」。传统有音箱的喇叭,为了求得更精准的定痊与相位,并假设自然乐器发声是在一个点上,因此利用喇叭箱的特殊构造,让每一个单体的磁铁与音圈都在同一个垂直轴线上排列,我们称这为「点音源喇叭」。Duntech与Hales是「点音源喇叭」最好的范例,而Pioneer 或JBL K2等上下两个低音夹的新潮流,一些小型喇叭将两个单体尽量靠近摆放,也可获得类似点音源的效果。在这两种设计之外,还有种历久不衰,多年来一直有人支持的「同轴喇叭」(Co-Axial或Concentric)。
同轴喇叭的启始者是Tannoy,他们在五0年代就设计出第一个同轴单体。顾名思义,同轴就是指高音与中低音的单体发声点是在同一条水平轴线上,这比点音源喇叭的垂直轴线似乎更能提供正确的相位、振幅与最佳的扩散角度,只要聆听时耳朵的位置与单体的轴线对齐,整个频段的声音会同时到达聆听位置。在 Tannoy之后,也有不少广家跟进开发同轴式单体,不过最有成就的仍是英国KEF,他们的设计称为「同时同轴」(Coincident)。原来 Tannoy新一代的同轴单体,低音与高音的音圈、磁铁不仅分离,位置也不相同,高音比低音略前,而还加上一个金香型的道波器,有类似号角的扩散作用。 KEF发表的Uni-Q单体则是将低音与高音结合在同一块底盘上,如此除了发声点「同轴」外,也具有「同时」的作用。美国Soundwave的同轴设计也很特别,他们将一个传统高音用「悬吊」的方式,直接挂在低音单体的正中前方,一方面有同轴的优点,一方面又减少了传统的同轴单体因为「大号角作用」引起的极高频衰减。
同轴嗽叭可以得到很精确的中音,却一直很难空破极高频与极低频的极限。Tannoy的GRF必须使用十五寸的特大单体与强力的Al-ComaxⅢ磁铁,才获得理想的低频延伸。DEF则发表了空腔耦合设计,利用多个低音单体的动作来取得进一步效果。
TOP
5#

转贴!!

声音听觉理论

由于人耳听觉系统非常复杂,迄今为止人类对它的生理结构和听觉特性还不能从生理解剖角度完全解释清楚。所以,对人耳听觉特性的研究目前仅限于在心理声学和语言声学。
    人耳对不同强度、不同频率声音的听觉范围称为声域。在人耳的声域范围内,声音听觉心理的主观感受主要有响度、音高、音色等特征和掩蔽效应、高频定位等特性。其中响度、音高、音色可以在主观上用来描述具有振幅、频率和相位三个物理量的任何复杂的声音,故又称为声音“三要素”;而在多种音源场合,人耳掩蔽效应等特性更重要,它是心理声学的基础。下面简单介绍一下以上问题。
一、声音三要素
1.响度
    响度,又称声强或音量,它表示的是声音能量的强弱程度,主要取决于声波振幅的大小。声音的响度一般用声压(达因/平方厘米)或声强(瓦特/平方厘米)来计量,声压的单位为帕(Pa),它与基准声压比值的对数值称为声压级,单位是分贝(dB)。对于响度的心理感受,一般用单位宋(Sone)来度量,并定义 lkHz、40dB的纯音的响度为1宋。响度的相对量称为响度级,它表示的是某响度与基准响度比值的对数值,单位为口方(phon),即当人耳感到某声音与1kHz单一频率的纯音同样响时,该声音声压级的分贝数即为其响度级。可见,无论在客观和主观上,这 两个单位的概念是完全不同的,除1kHz纯音外,声压级的值一般不等于响度级的值,使用中要注意。
  响度是听觉的基础。正常人听觉的强度范围为0dB—140dB(也有人认为是-5dB— 130dB)。固然,超出人耳的可听频率范围(即频域)的声音,即使响度再大,人耳也听不出来(即响度为零)。但在人耳的可听频域内,若声音弱到或强到一定程度,人耳同样是听不到的。当声音减弱到人耳刚刚可以听见时,此时的声音强度称为“听阈”。一般以1kHz纯音为准进行测量,人耳刚能听到的声压为 0dB(通常大于0.3dB即有感受)、声强为10-16W/cm2  时的响度级定为0口方。而当声音增强到使人耳感到疼痛时,这个阈值称为“痛阈”。仍以1kHz纯音为准来进行测量,使 人耳感到疼痛时的声压级约达到140dB左右。
    实验表明,闻阈和痛阈是随声压、频率变化的。闻阈和痛阈随频率变化的等响度曲线(弗莱彻—芒森曲线)之间的区域就是人耳的听觉范围。通常认为,对于 1kHz纯音,0dB—20dB为宁静声,30dB--40dB为微弱声,50dB—70dB为正常声,80dB—100dB为响音声,110dB— 130dB为极响声。而对于1kHz以外的可听声,在同一级等响度曲线上有无数个等效的声压—频率值,例如,200Hz的30dB的声音和1kHz的 10dB的声音在人耳听起来具有相同的响度,这就是所谓的“等响”。小于0dB闻阈和大于140dB痛阈时为不可听声,即使是人耳最敏感频率范围的声音,人耳也觉察不到。人耳对不同频率的声音闻阈和痛阈不一样,灵敏度也不一样。人耳的痛阈受频率的影响不大,而闻阈随频率变化相当剧烈。人耳对3kHz— 5kHz声音最敏感,幅度很小的声音信号都能被人耳听到,而在低频区(如小于800Hz)和高频区(如大于5kHz)人耳对声音的灵敏度要低得多。响度级较小时,高、低频声音灵敏度降低较明显,而低频段比高频段灵敏度降低更加剧烈,一般应特别重视加强低频音量。通常200Hz--3kHz语音声压级以 60dB—70dB为宜,频率范围较宽的音乐声压以80dB—90dB最佳。
2.音高
    音高也称音调,表示人耳对声音调子高低的主观感受。客观上音高大小主要取决于声波基频的高低,频率高则音调高,反之则低,单位用赫兹(Hz)表示。主观感觉的音高单位是“美”,通常定义响度为40方的1kHz纯音的音高为1000美。赫兹与“美”同样是表示音高的两个不同概念而又有联系的单位。
   人耳对响度的感觉有一个从闻阈到痛阈的范围。人耳对频率的感觉同样有一个从最低可听频率20Hz到最高可听频率别20kHz的范围。响度的测量是以 1kHz纯音为基准,同样,音高的测量是以40dB声强的纯音为基准。实验证明,音高与频率之间的变化并非线性关系,除了频率之外,音高还与声音的响度及波形有关。音高的变化与两个频率相对变化的对数成正比。不管原来频率多少,只要两个40dB的纯音频率都增加1个倍频程(即1倍),人耳感受到的音高变化则相同。在音乐声学中,音高的连续变化称为滑音,1个倍频程相当于乐音提高了一个八度音阶。根据人耳对音高的实际感受,人的语音频率范围可放宽到80Hz --12kHz,乐音较宽,效果音则更宽。
3.音色
   音色又称音品,由声音波形的谐波频谱和包络决定。声音波形的基频所产生的听得最清楚的音称为基音,各次谐波的微小振动所产生的声音称泛音。单一频率的音称为纯音,具有谐波的音称为复音。每个基音都有固有的频率和不同响度的泛音,借此可以区别其它具有相同响度和音调的声音。声音波形各次谐波的比例和随时间的衰减大小决定了各种声源的音色特征,其包络是每个周期波峰间的连线,包络的陡缓影响声音强度的瞬态特性。声音的音色色彩纷呈,变化万千,高保真(Hi— Fi)音响的目标就是要尽可能准确地传输、还原重建原始声场的一切特征,使人们其实地感受到诸如声源定位感、空间包围感、层次厚度感等各种临场听感的立体环绕声效果。
   另外,表征声音的其它物理特性还有:音值,又称音长,是由振动持续时间的长短决定的。持续的时间长,音则长;反之则短。从以上主观描述声音的三个主要特征看,人耳的听觉特性并非完全线性。声音传到人的耳内经处理后,除了基音外,还会产生各种谐音及它们的和音和差音,并不是所有这些成分都能被感觉。人耳对声音具有接收、选择、分析、判断响度、音高和音品的功能,例如,人耳对高频声音信号只能感受到对声音定位有决定性影响的时域波形的包络(特别是变化快的包络在内耳的延时),而感觉不出单个周期的波形和判断不出频率非常接近的高频信号的方向;以及对声音幅度分辨率低,对相位失真不敏感等。这些涉及心理声学和生理声学方面的复杂问题。

二、人耳的掩蔽效应
    一个较弱的声音(被掩蔽音)的听觉感受被另一个较强的声音(掩蔽音)影响的现象称为人耳的“掩蔽效应”。被掩蔽音单独存在时的听阈分贝值,或者说在安静环境中能被人耳听到的纯音的最小值称为绝对闻阈。实验表明,3kHz—5kHz绝对闻阈值最小,即人耳对它的微弱声音最敏感;而在低频和高频区绝对闻阈值要大得多。在800Hz--1500Hz范围内闻阈随频率变化最不显著,即在这个范围内语言可储度最高。在掩蔽情况下,提高被掩蔽弱音的强度,使人耳能够听见时的闻阈称为掩蔽闻阈(或称掩蔽门限),被掩蔽弱音必须提高的分贝值称为掩蔽量(或称阈移)。
1.掩蔽效应
      已有实验表明,纯音对纯音、噪音对纯音的掩蔽效应结论如下:
     A.纯音间的掩蔽
              ①对处于中等强度时的纯音最有效的掩蔽是出现在它的频率附近。
              ②低频的纯音可以有效地掩蔽高频的纯音,而反过来则作用很小。
     B.噪音对纯音的掩蔽噪音是由多种纯音组成,具有无限宽的频谱
    若掩蔽声为宽带噪声,被掩蔽声为纯音,则它产生的掩蔽门限在低频段一般高于噪声功率谱密度17dB,且较平坦;超过500Hz时大约每十倍频程增大 10dB。若掩蔽声为窄带噪声,被掩蔽声为纯音,则情况较复杂。其中位于被掩蔽音附近的由纯音分量组成的窄带噪声即临界频带的掩蔽作用最明显。所谓临界频带是指当某个纯音被以它为中心频率,且具有一定带宽的连续噪声所掩蔽时,如果该纯音刚好能被听到时的功率等于这一频带内噪声的功率,那么这一带宽称为临界频带宽度。临界频带的单位叫巴克(Bark),1Bark=一个临界频带宽度。频率小于500Hz时,1Bark约等于freq/100;频率大于 500Hz时,1Bark约等于9+41og(freq/1000),即约为某个纯音中心频率的20%。通常认为,20Hz--16kHz范围内有24个子临界频带。而当某个纯音位于掩蔽声的临界频带之外时,掩蔽效应仍然存在。
2.掩蔽类型
(1)频域掩蔽
    所谓频域掩蔽是指掩蔽声与被掩蔽声同时作用时发生掩蔽效应,又称同时掩蔽。这时,掩蔽声在掩蔽效应发生期间一直起作用,是一种较强的掩蔽效应。通常,频域中的一个强音会掩蔽与之同时发声的附近的弱音,弱音离强音越近,一般越容易被掩蔽;反之,离强音较远的弱音不容易被掩蔽。例如,—个1000Hz的音比另一个900Hz的音高18dB,则900Hz的音将被1000Hz的音掩蔽。而若1000Hz的音比离它较远的另一个1800Hz的音高18dB,则这两个音将同时被人耳听到。若要让1800Hz的音听不到,则1000Hz的音要比1800Hz的音高45dB。一般来说,低频的音容易掩蔽高频的音;在距离强音较远处,绝对闻阈比该强音所引起的掩蔽阈值高,这时,噪声的掩蔽阈值应取绝对闻阈。
(2)时域掩蔽
   所谓时域掩蔽是指掩蔽效应发生在掩蔽声与被掩蔽声不同时出现时,又称异时掩蔽。异时掩蔽又分为导前掩蔽和滞后掩蔽。若掩蔽声音出现之前的一段时间内发生掩蔽效应,则称为导前掩蔽;否则称为滞后掩蔽。产生时域掩蔽的主要原因是人的大脑处理信息需要花费一定的时间,异时掩蔽也随着时间的推移很快会衰减,是一种弱掩蔽效应。一般情况下,导前掩蔽只有3ms—20ms,而滞后掩蔽却可以持续50ms—100ms。
TOP
6#

转贴:音箱技术指标素描

转贴:音箱技术指标素描

  转贴信息来源:全电子    




  现在市场上的音箱贵的上千,便宜的三十元就能买到,那么到底怎样的音箱才算是一套真正的好音箱呢?下面笔者就和大家谈谈音箱的相关性能指标,希望这些内容能给大家在选购音箱时提供一些参考。

1. 频响范围

  频响范围的全称叫频率范围与频率响应。前者是指音箱系统的最低有效回放频率与最高有效回放频率之间的范围;后者是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系称为频率响应,单位分贝(dB)。

  声压与相位滞后随频率变化的曲线分别叫做“幅频特性”和“相频特性”,合称“频率特性”。这是考查音箱性能优劣的一个重要指标,它与音箱的性能和价位有着直接的关系,其分贝值越小说明音箱的频响曲线越平坦、失真越小、性能越高。如:一音箱频响为60Hz~18kHz+/-3dB。这两个概念有时并不区分,就叫做频响。从理论上来讲,构成声音的谐波成分是非常复杂的,并非频率范围越宽声音就好听,不过这对于中低档的多媒体音箱来讲还是基本正确的。现在的音箱厂家对系统频响普遍标注的范围过大,高频部分差的还不是很多,但在低音端标注的极为不真实,所以敬告大家低频段声音一定要耳听为实,不要轻易相信宣传单上的数值。

  2. 灵敏度

   该指标是指在给音箱输入端输入1W/1kHz信号时,在距音箱喇叭平面垂直中轴前方一米的地方所测得的声压级。灵敏度的单位为分贝(dB)。音箱的灵敏度每差3dB,输出的声压就相差一倍,普通音箱的灵敏度在85~90dB范围内,85dB以下为低灵敏度,90dB以上为高灵敏度,通常多媒体音箱的灵敏度则稍低一些。

  3. 功率

  该指标说简单一点就是,感觉上音箱发出的声音能有多大的震撼力。根据国际标准,功率有两种标注方法:额定功率与最大承受功率(瞬间功率或峰值功率PMPO)。而额定功率是指在额定频率范围内给扬声器一个规定了波形的持续模拟信号,扬声器所能发出的最大不失真功率,而最大承受功率是扬声器不发生任何损坏的最大电功率。通常商家为了迎合消费者心理,通常将音乐功率标的很大,所以在选购多媒体音箱时要以额定功率为准。音箱的最大承受功率主要由功率放大器的芯片功率决定,此外还跟电源变压器有很大关系。掂一掂主副音箱的重量差就可以大致知道变压器的重量,通常越重功率越大。但音箱的功率也不是越大越好,适用 就是最好的,对于普通家庭用户的20平方米左右的房间来说,真正意义上的50W功率是足够的了,没有必要去过分追求高功率。

  4. 失真度

  音箱的失真度定义与放大器的失真度基本相同,不同的是放大器输入的是电信号,输出的还是电信号,而音箱输入的是电信号,输出的则是声波信号。所以音箱的失真度是指电声信号转换的失真。声波的失真允许范围是10%内,一般人耳对5%以内的失真不敏感。大家最好不要购买失真度大于5%的音箱。

  5. 信噪比

  该指标指音箱回放的正常声音信号与噪声信号的比值。信噪比低,小信号输入时噪音严重,在整个音域的声音明显变得浑浊不清,不知发的是什么音,严重影响音质。信噪比低于80dB的音箱(包括低于60dB的低音炮)建议不购买。

  6. 阻抗

  该指标是指输入信号的电压与电流的比值。音箱的输入阻抗一般分为高阻抗和低阻抗两类,一般高于16欧姆的是高阻抗,低于8欧姆的是低阻抗,音箱的标准阻抗是8欧姆。市场上音箱的标称阻抗有4欧姆、5欧姆、6欧姆、8欧姆、16欧姆等几种,虽然这项指标与音箱的性能无关,但是最好不要购买低阻抗的音箱,推荐值是标准的8欧姆,这是因为在功放与输出功率相同的情况下,低阻抗的音箱可以获得较大的输出功率,但是阻抗太低了又会造成欠阻尼和低音劣化等现象。

  7. 音效技术

  硬件3D音效技术现在较为常见的有SRS、APX、Q-SOUND和Virtaul Dolby等几种,它们虽各自实现的方法不同,但都能使人感觉到明显的三维效果,其中又以第一种最为常见。它们所应用的都是扩展立体声(Extended Stereo)理论,这是通过电路对声音信号进行附加处理,使听者感到声响方位扩展到了两音箱的外侧,以此进行声响扩展,使人有空间感和立体感,产生更为宽阔的立体声效果。此外还有两种音效增强技术:有源机电伺服技术和BBE高清晰高原音重放系统技术,对改善音质也有一定效果。
TOP
7#

转贴:如何在试听室获得最佳声音(连载2)

短墙对长墙的摆位
所有表示的例子,都假设,喇叭被放在房间的短墙面,这种传统方法,提供最大的空间,把喇叭往外拉深入房中、离开后墙。然而,把喇叭放在长墙面,也有一些优点。
长墙摆位,结果是,对着聆听位置拥有较多直接音,边墙的反射能量则较少。这样对声音清晰度、声音舞台,有很大好处,什么原因?本章稍后会叙述。你听到较多的喇叭声音、较少房间绕射的声音。
可以长墙摆位,喇叭与后墙、喇叭与聆听位置间,及聆听者与聆听后墙间,必须有相当空间,如果你坐着、头部靠近后墙,声音可能会隆隆响。因此,你以长墙面摆喇叭,只能在很大房间、很靠近喇叭听。
喇叭分音,以第一阶方式设计,聆听者与喇叭间须要很好的空间,好让各别单体的声音,正常的融合成一体。如果你离第一阶分音式喇叭太近,则高中低音的平衡会不正确。当决定长墙摆位时,要先考量房间的宽度与分音器的设计方式。长墙摆位聆听位置,反射音的减少,是一种优点。
最后,你可考虑,将喇叭与房间摆成奇特角度。我曾看过喇叭设计者,在音响展时,使用这样技巧,尝试在饭店小房间中,得到好的声音。
这种摆法,对小喇叭最有功效,优点是,能够减少聆听位置的边墙反射。不利的地方是,这样会浪费很多地板空间,将喇叭靠近墙壁,会增强低音。那就是为什么,具有限低音延伸的小喇叭,运用此技巧较成功的原因。

双相及两极喇叭的摆位
双相喇叭产生前后两种声音,静电喇叭属于双相喇叭,因其振膜置于开放空间,而不是在喇叭箱里,前后发出同样的声音。双相喇叭的后面声波,与前面的声波是反相的。就是,当振膜往前,在振膜前方产生正音压时,同时在振膜后方产生负音压。
典型两极喇叭,在喇叭箱前后,使用一系列传统喇叭单体,两极喇叭的声波,彼此同相。双相与两极喇叭之间的差别,在于双相喇叭的前后声波、是反相的,而两极喇叭的前后声波、是同时相的。
当确定双相喇叭摆位时,最重要的考量因素,是此时喇叭后墙,对声音的影响,比传统点音源喇叭(直接能量只有一个方向)为大。相反地,边墙如何处理,对双相喇叭比较不重要,因其对边墙发出极少的能量。
通常,双向喇叭喜欢会反射的后墙,喇叭后带有一些扩散器物,以便打散反射能量。高度吸音性后墙,会破坏双相喇叭的设计目的——你想听到有用的反射能量。假使墙是平的,表面无法分散声音,则反射的声音,会结合直接音,导致声音舞台深度的减少。
直接放在双向喇叭后面的书柜,有助扩散(分散)后面的声波,岩石壁炉、家俱及其它不规则器物都有用。ASC管状吸音器,可直接放在双向喇叭后面,把反射面朝 外。你也可以试试各种RPG扩散板,RPG Skyline扩散器,是双相喇叭,扩散后面声波的理想器材。这些2呎方块,对分散声音极为有效,可贴在墙上,也可黏在台架上。每只落地型喇 叭,约须两三块Skyline垂直叠起来、直接摆在后面。
你还是须要处理边墙,以便能吸收双相喇叭的反射。但是其狭窄的放射型态,受影响程度,就没点音源喇叭那么重大了。尤其是,当双相喇叭角度往内、调向聆听位置,声音最好听时。同样的,双相喇叭具有很少的垂直扩散,意即很少指向天花板、地板。
双相喇叭,也须要比传统点音源喇叭,更往房间中央摆,你把喇叭靠近后墙,无法期待能够得到大而深的声音舞台。要有心理准备,把广大聆听空间,让给双相喇叭。

喇叭摆位摘要
喇叭摆位,是唯一你能做且最重要,以用来改善系统声音的事情。它是免费的,有助于锻炼聆听技巧,以同样的电子器材及喇叭,区别不良与优秀的声音。在花钱升级器材、处理音场前,先做好喇叭摆位,了解你的系统潜能。
找到喇叭最好摆位后,接着,装上厂商提供的地毯脚钉(有的话),调好脚钉的水平,让喇叭不会摇晃,喇叭重量该被全部四只(或三只)脚钉承载,如果你的地板是木造的,为了不受脚钉损伤,在脚钉下放上、经常随喇叭供应的金属圆垫片。
阁下已见识到喇叭的摆位,提供精确、独立调控,有关音乐表现的不同状况。你可改变喇叭与后墙、边墙的距离,来控制低音的质与量。听得到的房间共振状况,可寻 找喇叭与聆听椅子的最佳位置来降低。高音的平衡,可以聆听的高度以及喇叭的角度内调来调整。声音舞台的聚焦与宽度,很容易以内调喇叭角度来改变。把喇叭往 房间中央移,声音舞台深度会增加。
想在试听室,获得最好的声音,喇叭的定位,是强而有力的手段。不须花费一分钱,好好的利用它。

常见的房间难题与处理方法
处理试听室的范围,从简单的、在墙上悬挂一张壁毯,到加上特殊设计的音响改善器物。大幅度音质效果的达成,只要加上或移开一般家庭器物,如地毯、装饰壁毯、 帘幕。这个方法简单、不贵,有时候,声音甚至比装置不熟悉的音响改善器物更美。你可利用现成的屋内器物,改善房间效果,或采取下一步,装置精巧的音响调控 器具。下面为一些非常普通的房间难题与解决方法︰
1.未处理的平行表面
或许最普通及有害的房间难题,是未处理的平行表面,如果,两个反射 的墙面彼此面对,会产生摆荡回音。摆荡回音是一种「乒」般短暂高音,是在直接音停止后残留的声音。你如果曾在未贴地毯的空屋中拍手,就会听到摆荡的回音。 其声像掌声消退后、悬浮在空中的声响,摆荡回音是一种周期的反复,由于两表面间,来回失控的反射所引起。设想两面镜子彼此相对,在两反映面间来回反映,产 生无法计量、距离后退的幻象。摆荡回音,会伤害瞬时起音及消退,在上阶中频及高音上,加了生硬的金属声特色。
在房子的不同房间里拍手——特别是浴室或玄关,如果你的试听室,有类似在浴室里听到的悬浮音,你须要修正这个问题。
摆荡回音容易避免,只要确认平行反射面,在其中一面加上吸音或扩散材料,这样就能打破两个表面间重复反射。材料可以使用壁毯、地毯(如果摆荡回音是出于硬的 地板和天花板)、窗户的帘幕、或墙壁上的吸音材料。即使如Sonex(后述)小片高效能吸音泡绵,都可以消除摆荡回音。
一种有效控制摆荡回音,而 不会让房间变得太呆滞的材料,是一种很薄、像地毯般,用在机场的材料。虽然当音响处理材料卖得很贵,这种地毯般的材料,地毯工厂的价格,只要音响供货商的 几分之一。这料子不突出、好使用,有各种颜色,相当便宜、非常有效。再者,它的吸音特性,刚刚好避免摆荡回音,不会吸掉太多能量,使房间变得太呆滞。壁毯 可以用黏、或以大头钉固定,也可以贴上Masonite背衬,让你能够在周遭移动,找寻最有效的位置。
ASC公司,最近介绍了一种消除摆荡回音的产品,叫Flutter Stix,大小为1.5吋x 3.5吋x 24吋,可以在几分钟内、黏贴在墙上。较大规格尺寸为1.5吋 x 4吋x 36吋。
不管那一个解决方法,消除摆荡回音,是最重要的事情。
2.未受调控的地板与边墙反射
喇叭被摆在邻近边墙、接近地板,是无可避免的。声音从喇叭直接到达听者,另外还有边墙、地板、天花板的反射。边墙的反射,是时间延迟的音乐信号;音色遭到渲染,是由于直接声音夹杂不同地点的声波。所有这些因素,都会降低声音品质。还有,地板与边墙的反射,会和直接声音相互作用,进一步渲染、音乐高中低音的 平衡性。聆听位置的声音,是直接与反射声音的组合。
边墙反射在三方面,渲染音乐声音的平衡性。首先,所有喇叭的偏轴心响应(在喇叭旁量到的频率响应),比起轴心响应来说,可谓非常地不平坦。从喇叭旁发出来 的声音(从边墙折射的讯号),频响可能会有大的峰值或凹陷。当此受渲染的讯号,从边墙反射到听者时,我们听到渲染的声音,会强加在音乐上。
接着,边墙的音响特性,会再次渲染反射音,如果墙壁只吸高音频率、而没吸中音能量,反射音会较缺高音。
最后,当直接与反射音混在一起,聆听者听到从喇叭来,直接及稍微延迟、由边墙反射来的综合声音。延迟是因为声源(喇叭)与听者间,额外路径长度的差别。因为 声音每秒行进速度为1130呎,我们很容易计算延迟的时间。如图11路径长度差异是4呎,与直接音比,边墙反射会延迟35毫秒(千分之35秒)。
这种结果叫做,梳状滤器现象,频响尖峰与V形缺口的结果(像一把梳子),乃由直接与反射间、建设性与有害性彼此干扰所形成。两种讯息间相位的差异,造成某个频率的相互抵消与增强,其状况由路径长度决定,一切加总,成为聆听位置的声音渲染。
此结构的结果是,声音带着很不同的高、中、低声音协调性,跟喇叭的直接信息不同。边墙的反射,是同一喇叭在不同房间、声音不同的一个原因。
边 墙反射,不只影响看得见的频谱平衡性,也会破坏声音舞台里,精确音像的定位。反射表达喇叭在边墙讯号的虚像,虽然某种程度的边墙反射,增加空间和大小,强 烈的反射,加大喇叭间的明显距离。这个会伤害个别音像间的空间差异,使声音舞台不精确、凝聚降低。当我们听到位在中央的音像,好如从左右喇叭边界外发声, 我们所追求的紧密音像聚焦,于此被破坏了。
声音也会从地板和天花板反射,地板反射,倾向于造成中低音能量的减少,使表现稍微偏瘦。天花板反射,对 声音的影响,由于较大的路径长度差距,没边墙那么厉害。记得,双相喇叭的声音,导向天花板的能量很少,所以受天花板影响的程度,也不像传统喇叭那么大。最 后,带坡度的天花板,对传统喇叭摆在房间短边,是有益的。天花板坡度,会把天花板反射,导离聆听位置。
幸运地,处理边墙反射倒是非常简单:只要把 吸音或扩散材料,放在喇叭与聆听位置之间即可。地板反射甚至更容易处置:地毯或厚的装饰毯摆在地板上,可以吸掉大部份的反射,减低其有害的影响。然而,低频不会被地毯或饰毯所吸,由于直接与反射音间的干扰,导致中阶低音的抵消。这就是所谓叶立逊(Allison)效应,因喇叭设计师Roy Allison而得名,他首次公开发表此一现象。
有趣的是,你跟喇叭之间,地毯的型别,会影响声音的性质。特别是,羊毛地毯比人造纤维地毯,产生 更自然的声音平衡性。那是因为羊毛地毯里,所有纤维的长度、粗细稍有不同,使其能吸收不同频率。相反地,人造纤维地毯,则由相同大小、形状的纤维组成,只 吸收很窄波段的频率。你可以在地毯店,实验演示该现象。对着羊毛与人造纤维样品说话,听听你自己的声音,羊毛地毯会产生更自然的音色。
边墙的声音应该被扩散或吸收,扩散会把单一不连贯的反射,化成许多较小幅度的反射,传向不同的方向。
扩散可用如RPG音响扩散器,或不规则的表面来达成。后面放满书的书箧,扩散性非常好,特别是大小不同,或以书脊突出不同距离。图14b表示RPG扩散器,装置在喇叭之后。留意,地板上的装饰地毯,位于喇叭与聆听位置之间。
第二个选择,是以音响吸音材料,来吸取边墙反射。本章稍后叙述的音响泡绵会有效,但是以活性泡绵,吸掉所有边墙反射,会让房间变得无生气,限制表现的规模与空间。
在Hi-End社团间,关于边墙反射该吸音或扩散有些争论。扩散的支持者主张,如果转换成许多较小量的反射,超越时间与空间,反射的能量是有益的。
扩 散的反射,增进了音乐的空间与空气感。吸音的支持者建议,任何直接声音的首20微秒内的反射,会降低从喇叭来的声音。大部份录音室的控制间,都叫人设计提 供「无反射区」,工程师坐在那里,只听到从录音室监听喇叭出来的直接声音。我的经验建议,吸收边墙的反射、比扩散好。然而座位后面的扩散材料,比吸音材料 好。无论如何,未受调控的边墙反射,会还是不会劣化房间的声音表现,没有争论,答案是会的。
TOP
8#

转贴
聽音頻率說明

极高频:
16K-20K 色彩 提升有神秘感;
12K-16K 高频泛音,光彩;
10K-12K 高频泛音,光泽;
高频和高频低段:
8K-10K S音;
6K-8K 明亮度、透明度, 提升齿音重、降落 声音黯淡;
5K-6K 语言的清晰度,提升声音锋利、易疲劳;
中频上段:
4K-5K 乐器表面响度,提升乐器距离近、降落 乐器距离远;
4K 穿透力,提升 咳音;
2K-3K 对明亮度最敏感,提升声音硬,不自然
中频:
1K-2K 通透感、顺畅感,提升有跳跃感、降落 松散;
800 力度,提升喉音重;
500-1K 人声基音、声音轮廓,提升语音前凸、降落语音收缩感;
300-500 语音主要音区,提升语音单调、降落语音空洞;
中频低段:
150-300 声音力度、男声力度,提升声音硬、无特色,降落:软、飘;
低频:
100-150 丰满度,提升浑浊、降落单薄;
60-100 浑厚感,提升轰鸣(轰)、降落无力;
20-60 空间感,提升低频共振(嗡)、降落空虚;
低频上段80-160;中低频40-80;低频下段20-40;超低频32-~。

频率说明

<80Hz

80Hz 以下主要是重放音乐中以低频为主的打击乐器,例如大鼓、定音鼓,还有钢琴、大提琴、大号等少数存在极低频率的乐器,这一部分如果有则好,没有对音乐欣赏的影响也不是很大。这一部分要重放好是不容易的,对器材的要求也较高。许多高级的器材,为了表现好80(或80左右)Hz以上的频段的音乐,宁愿将80(或 80左右)Hz以下的频率干脆切除掉,以免重放不好,反而影响主要频段的效果。极低频20Hz为人耳听觉下限,可测试您的器材低频重放下限,低频中的 25Hz、31.5Hz、Hz、40Hz、50Hz和63Hz是许多音箱的重放下限,如果您的音箱在这些频率中某处声音急剧下降,则表明这个频率就是您的音箱低频重放下限。

80-160Hz

在80-160Hz频段的声音主要表现音乐的厚实感,音响在这部分重放效果好的话,会感到音乐厚实、有底气。这部分表现得好的话,在80Hz以下缺乏时,甚至不会感到缺乏低音。如果表现不好,音乐会有沉闷感,甚至是有气无力。是许多低音炮音箱的重放上限,具此可判断您的低音炮音箱频率上限。

300-500Hz

在300-500Hz频段的声音主要是表现人声的(唱歌、朗诵),这个频段上可以表现人声的厚度和力度,好则人声明亮、清晰,否则单薄、混浊。

800Hz

800Hz这段一般设备都容易播好,但是要注意不要过多。这段要是过多的话会感到音响的频响变窄,高音缺乏层次,低频丰满度不够。

1000Hz

1 kHz是音响器材测试的标准参考频率,通常在音响器材中给出的参数是在1 kHz下测试。

1200Hz

1.2kHz可以适当多一点,但是不宜超过3dB,可以提高声音的明亮度,但是,过多会是声音发硬。

2000-4000Hz

2~4kHz对声音的亮度影响很大,这段声音一般不宜衰减。这段对音乐的层次影响较大,有适当的提升可以提高声音的明亮度和清晰度,但是在4kHz时不能有过多的突出,否则女声的齿音会过重。

8000-12000Hz

8~12kHz 是音乐的高音区,对音响的高频表现感觉最为敏感。适当突出(5dB以下)对音响的的层次和色彩有较大帮助,也会让人感到高音丰富。但是,太多的话会增加背景噪声,例如:系统(声卡、音源)的噪声会被明显地表现出来,同时也会让人感到声音发尖、发毛。如果这段缺乏的话,声音将缺乏感染力和活力。

14000Hz

14kHz以上为音乐的泛音区,如果缺乏,声音将缺乏感染力和高贵感,例如小提琴将没有“松香味”。这一部分也不宜过多,基本平直或稍有衰减(不超过-3dB)即可。

20000Hz

20 kHz 为人耳听觉上限,可测试您的器材高频重放上限。16 kHz-20 kHz可能在一些器材中消失,此时有可能是您的器材无法重放此段频率.
TOP
9#

胆声奇异现象探源

<--StartFragment --> 胆声奇异现象探源

<--StartFragment -->

在音响爱好者中,胆机始终是一个有争议的话题。作为胆机的核心─真空电子管(即胆管),由于体积大,能耗多,不耐机械振动,致使胆机存在明显的缺点。然而胆机放声耐听,有味道,音底干净,也是公认的事实。故而许多爱好者执着于胆机,乐此不疲。

     是否石机声很差不中听呢?这绝不是事实。石机音色素有冷艳之说。好的石机,音色是非常诱人的。但是能让人听进去,忘乎所以的石机却鲜见其踪。听石机,时间一长,便觉其声虽然很美,细节也不错,可是总感到离我们有点远,难以零距离接触。一般认为胆声甜美胜过石声,其实这有失客观公正。胆声实际倒更朴素平淡一些,然而离我们却是更近。所谓听胆声有味道,主要是指胆声富于情感色彩,传神,而这其实是作品的艺术魅力,胆声不过是毫无染地将其带给听者而已。

     胆声倒是有一个明显的自身特点:音底特别干净,且音色纯正。并且随着机子工作时间的延长,逾加炉火纯青,音色洁净醇厚,胆机的这种韵味与石机冷艳之声全然不是一路。为求胆韵,许多石机也纷纷改进电路加以模仿,声称具有胆味。特别是场效应管石机,据说声底已与胆机相差无几。笔者曾有意识地欣赏了一些优秀的场效应管石机。可说音色极美,很是不错。不过要说具有胆味,似乎谈不上。根本就是两种不同的声音风格。

    胆机,石机音质不同应该不是外部电路变化能改变的。你能通过改进喂养方式让鸭肉具有鸡味吗?音质差异只是胆与晶体管的外部现象。音质取向不同的根本原因在于两者的内部构造与工作机理的差异。

电子管的线性好,可使用较浅的负反馈

     真空电子管是利用电场控制真空中的电子流原理而工作的。电子在真空中的运行规律决定了电子管的输出特性。若用数学形式描述。则电子管的输出是输入 1/1/2次幂函数,而全无失真的输出应是输入的正比例函数,即线性函数。正比例函数就是1次幂函数。显然胆管不是线性放大器件,输出中含有失真。不过 1/1/2次幂函数基本上与1次幂函数相差不多,胆管输出中的失真本身不是太大。

    双极型晶体管输出是输入的指数函数。输出变化量远远大于正比例函数,也远大于1/1/2幂函数,所以输出中失真份量很大,失真程度比胆管厉害得多。而且随着输入幅度的增大,失真随之增长极快。一些石机,小音量时音质尚有模有样,音量一大音质立即劣化,就是晶体管失真迅速增长而又未能很好地在电路上加以抑制的结果。

     场效应管输出是输入的2次幂函数。失真度低于晶体管,比胆管大一些。应该说场效应管是比较接近胆管的器件。不过,场效应管的失真成分中只含有偶次谐波,而胆管失真成份中既有偶次谐波也有奇次谐波。所以场效应管的音质与胆管音质还是有明显的不同,就是蒙住眼盲听,也很难把场效应管石机听成胆机。当然场效应管石机也自有独到之处。

    胆机发声“耐听”,“传神”……,这正是胆管输出失真较小,对输入信号保真度较高的缘故。从而造就胆声更接近于我们,更接近于真实。

     实际上,放大器中主要是采用负反馈的方式来降低失真。对晶体管电路来说尤其必要。负反馈能显著地降低失真度。但实际的听感中发现,负反馈越深,失真度越小,可声音鲜活度也越少。看来目前流行的在1000Hz频率上测量失真度来判别功放保真能力的方法,显然不能全面反映功放的保真状况。这并不奇怪,实践的发展往往要修正认识的偏差,推动认识的进步,这种上世纪测量失真的原则与方法,理当与时俱进加以改进。胆管因本身失真小,电路中负反馈量无须很大,甚至不用都是可以的。这造就了胆管放大具有较高的真实度,虽然失真度指标也许还高于晶体管机。胆声让我们感到耐听,其实是源于电子管自身的高传真特点。

“空间电荷效应”是胆机声底干净的主要原因

     怎样理解胆机的音底干净,音色纯正呢?音底干净可以认为是噪声低的缘故,音色纯正除了噪声低外,还应含有失真小的意思。晶体管(含场效应管)工作原理基于半导体内部的电子(空穴)迁移。电子(空穴)在固体的晶格之间实现迁移时,任何结构上的缺陷,比如分子错位,杂质存在,都将导致电子(空穴)的无规则运动,从而形成噪声。这就是所谓的闪变噪声。研究表明,半导体晶体中的杂质是导致闪变噪声的主要原因。而胆管中,电子运行的外部环境就要好得多。真空中的电子运动基本上不受限制,除了受输入信号控制,基本上不发生无规则运动。当然不存在闪变噪声。虽然,绝对的真空,技术上还是达不到的,电子在运动中还有可能与管内的残余气体分子碰撞而产生噪声,不过这种碰撞的几率很小。打个比方说,残余气体分子的密度只相当于一个房间中几只飞行的蚊子。有心与蚊子相碰,怕都很难。所以胆管的噪声一般较低,制作放大电路可获得较高的信号噪声比。听起来就显得音底特别干净。由于人耳的特性,对于远低于信号的噪声,根本是感受不到的。这就是人耳的“掩蔽效应”。通常,使用胆机,扬声器中的沙沙噪声是听不到的。而石机,在扬声器中听不到沙沙噪声者却很少有。

     然而进一步考查发现,胆中运行的电子并非天生,它们是从阴极表面放射出来的。而阴极材料却还是固体,并且仍旧是半导体材料。电子仍然首先必须从固体材料向外迁移。因此胆管不可避免地存在电子在固体中迁移所具有的噪声。如此看来胆噪声应不低于晶体管,起码与晶体管应为同一数量级。实际胆管阳极噪声测量也说明,胆管的确与晶体管(合格品)噪声水平相当。那么为什么胆机中就是听不到沙沙的噪声呢?而石机,甚至是噪声更低的场效应管机也总是能听到噪声呢?

    其实,这是因为胆管中的空间电荷效应的结果。

     胆管中的阴极工作时处于1000℃上下的红热状态,因而阴极材料中的电子具备较高的能量(能级),会挣脱阴极材料原子的束缚而冲出到体外的空间(真空)。故阴极材料的原子由于失去电子而带正电荷,在阴极表面与空间电子之间形成一电场,该电场将空间电子拉向阴极。因此冲出阴极的电子也不能跑太远,从而在阴极表面附近形成一电子云层,称之为电子云。胆管工作时,阴极电流实际是从电子云发出,并非直接由阴极放出。所以电子云是胆管工作电流的真正发源地,相当于实际的阴极,故也称作“虚阴极”。这种形态就是胆管所特有“空间电荷效应”。由于电子云处于阴极表面(电场)拉力与能级外冲力的平衡状态之中,发生噪动与不规则运动情况的可能性基本不存在,所以不产生噪声。从而间接地屏蔽了电子在阴极材料中迁移所形成的噪声。虽然胆管阳极噪声可能不低于晶体管,但是由于“虚阴极”的存在,胆管工作时的噪声却远远小于胆管晶体管,而且也低于场应管。这是胆机工作时音低特别干净的真实原因。

    任何胆管,因为存在了空间电荷效应,噪声都比较低。所以各个胆机,扬声器中的沙沙声都是听不到的。而这沙沙声正是主要由放大器件产生的噪声,称白噪声。

    空间电荷效应是胆管工作时特有的一种形态,在晶体管内绝不会存在。近年来,尽管由于制造技术水平的提高,晶体管器件的噪声水平已可能低于胆管。然而在实际运行时,胆管却显出更低的噪声效果,更佳的动态信噪比。胆机的音底干净就是印证。

    胆机还有一个现象;音质随开机时间的增加越来越好:逐渐达到最佳。这又是什么原因呢?

    这个现象可以理解为:随着工作时间延长,胆管噪声显著降低,特性趋于规范的缘故。

     胆管工作高热状态,其内部温度在1000℃以上。在此高温下,电极材料也会析出气体。所以胆管内均装有吸气剂,通常在管顶或管壁上一层黑亮的物质就是吸气剂。吸气剂是温度越高,化学性质越活泼,吸气作用越佳。所以随着胆机开机时间的延长,胆管内温度上升而趋于稳定,使吸气剂能允分发挥作用。从而使管内气体分子数充分减少,真空度提升。使胆内电子与气体分子的碰撞的噪声消除,胆的特性就接近理想状态。这样造成了音底越发干净,音色更趋于纯正的现象。

    另外,胆管由于外部环境中的热传导作用,管内温度是逐渐升高而趋于稳定的。而空间电荷的形成与温度密切相关。只有达到相当温度并稳定时,空间电荷才能稳定。而稳定的空间电荷存在则是低噪的原因。

     在胆管各种工作机理中,“空间电荷效应”是胆机奇异现象的主要原因,也是胆最可贵而又独特的性质。胆管中因空间电荷效应而形成“虚阴极”,的特点。目前其它固体器件尚无法具备。在音频宽带功放中,胆管的这个优点十分突出。当前先进的数码音源DVD-Audio或SACD,要求与之配接的功放带宽达 80KHz以上。而放大器件的噪声与带宽成正比,所以低噪声的器件更显重要。无疑,具有低噪特性的胆,在新一代功放中会再放光采。
TOP
发新话题 回复该主题