发烧论坛

注册

 

发新话题 回复该主题

详解全频带扬声器 作者:邱立祥(台湾) [复制链接]

1#
详解全频带扬声器 作者:邱立祥(台湾)
南璋之 转贴 发布于: 2008-03-21 16:03
本文作者为台湾的邱立祥先生,文章措辞均为台湾习惯
文章中有许多不同于大陆同行的观点,相当新颖。
转载此文仅出于传播目的,未有侵犯本文权益或赞成本文观点的意思。
  为什么连二期“音响知识进阶”都在谈喇叭单元?简单,因为你听到的声音就是发自单元。无论用了多么厉害的音箱(或不用音箱),和多么完美的分音器,若是少了好单元,一切还是白搭。所以单元是很重要的,这点应无庸置疑。
  那么,一个中音单元,高不上低不下,有什么了不起?但有很多人都说中音是音响发声最重要的频段,这我举双手赞成。如果你曾像我这么无聊,尝试用单独一只高音单元听蔡琴唱歌,或用单独一只低音单元听帕格尼尼的小提琴曲,就会深切的体认到中音单元的可爱。我想你也会同意,若强迫你只能用一个单元听音乐,你一定会选一个看起来长得像中音单元的东西。原因无他,因为你知道(或猜想)它会发出中音域的频段,而我们地球人的听力主要就是在这个范围内,音乐的构成主体也是在这儿。
  中音单元的设计
  上回说的“一指蒋”高音的概念,可以继续延伸至中音的范围,因为任何发声单元都可以解构为发声振膜、振膜悬挂以及驱动系统。只不过因为工作频段的不同,这些构成要素在这么多年的演化下渐渐演变到一个特定范围的大小。然而,其形状和材质等却有较多的变化,尤其是振膜材质,近年来可说是花样百出。
  我们就先来一一检视:
  纸盆振膜
  这应该算是最古老的材质了。简单的说,把纸浆悬浮液流入事先设计好的盆型网状模子上,纸浆便沉积其上,将沉积至适当厚度的纸浆抄出,再行干燥等后续加工处理,便成了一个纸盆振膜。而其中纸浆的成份,如纤维的种类、长短,及填料成份,和抄纸的制程及后段处理方式(如风干或热压等),都会影响最后成品的特性,也直接影响了发声特性,这些当然就是各家不外传的商业机密了(注1)……。
  (注1:多年前曾读过一篇洪怀恭先生现身说法所写的一篇有关纸盆制作的文章,除了浩叹纸盆所含的学问博大精深之外,更令我深深佩服洪前辈的研究精神。我在本文中轻描淡写的几句话,可是无法道尽多少年来先贤先烈们流血流汗所累积的精髓。)
  一般来说,纸盆的声音特性为平顺自然,明快清晰而不神经质。因为内含无数的纤维相互交织,因此在其中传递的能量可以很快被吸收掉,形成很好的阻尼,因此在发声频域的高端造成的盆分裂共振不明显,滚降的截止带也就很平顺。这可说是一种很好的特性,因为这样就可以用很简单的分音器,不需额外的剪裁,系统的整合也就很健康。
  另外,纸盆的刚性颇佳,对于瞬时反应和听感的细节表现有很好的成绩。别看手边常见的纸张都是软软的,在适当的形状和厚度下,纸的刚性是能够做得很不错。再者,若设计和制作得当,纸盆可以做得很轻,比最轻的塑料振膜还轻15%以上。虽比起最新的高科技合成纤维材料,纸质还是稍重了点,但其实相差不大,因此发声效率高。audax的6.5吋纸盆中音pr170系列,效率便高达100db/w。
  纸盆可能的弱点是其特性会随环境湿度而变化,因纸吸收了湿气后其密度会变高(变重)、刚性会变差(变软),所以发声的特性也会受影响。至于这样的改变是好是坏也很难说,英国的lowther俱乐部成员便宣称在下雨天时,家里的lowther喇叭特别好听。
  较令人担心的应该是干湿循环次数多了之后,可能会造成材料本身的疲劳,进而改变其原本的特性。但君不见许多古董纸盆单元在工作了数十年后还是照样唱得很好,所以这种情况应该还算轻微而渐进,有点像是熟化后进入另一个稳态的阶段,对我们用家来说应该是不成问题才对。
  近年来生产的纸盆单元,有一大部分便在这方面有各种改善的方式,使纸盆的特性可以更加稳定。常见的有表面涂膜,或是在纸质配方上作文章,有些厂家就宣称他们的纸盆能防水,从某些户外用的pa喇叭看来,应该有相当的可*度。当然,就像先前提到的,对于这类事情,我们一般人顶多看看热闹,要瞧出门道就不是那么容易了。另外,千万别把纸盆的悠久历史和“落伍”划上等号。若以整体音响产业的视野来看,纸质锥盆喇叭单元所占的比重稳居各类单元的首位。不信瞧瞧你家的电视、手提收录音机、床头音响、计算机……等等,是不是大部分都采用纸盆单元的小喇叭?你说,嗐!这些东西怎么能跟我的高科技high-end喇叭相比!但换个角度看,若这些“次级品”都换用非纸盆单元,保证更难听,而且更贵。这是因为纸盆这种材料可说已经发展得相当成熟,所以能够获得很好的成本效益比。再者,更有许多经得起时间考验的传奇老喇叭和超级制作的新世代霸主都有纸盆的身影:we/altec
  755a全音域、goodman axiom 80全音域、altec a5/a7、ar3a、lowther全音域、tad……等等族繁不及备载。一些热爱此道的资深玩家更是直接了当的说:“给我纸盆,其余免谈!”很多人也认为,将纸盆的制作称为科学还不如说是一项艺术,足见其引人入胜之魅力。
  塑料振膜
  因石化工业的发达,在我们日常生活环境中便随处可见塑料制品,低廉的原料和加工程序简便自然就获得了各种产业的青睐,其中当然也包括音响工业。
  这里说的塑料振膜,是指用塑料射出成型或其它方式做出的一体成型锥盆,最常用的材质应属聚丙烯(polypropylene,简称pp)。这种pp材质,我们最常接触到的应该就是微波炉用容器和保鲜盒一类制品,都是属于射出成型的。另外,常用于各类纸箱外加强用,黄色或灰色的打包带也是由聚丙烯纤维制成。由此我们可以体认到一件事,这种材料实在是非常的强韧。多数高分子聚合物的物理特性便是韧性特强,因为分子结构巨大且排列不规则,所以机械能在其中传递时会很快的被吸收消耗,阻尼特性很好。这项优点和纸盆类似,就是高端的滑落很平顺,除了听感上柔顺自然外,能够使用低阶、简单的分音器也是一项利多。我们可以从许多欧系二音路小喇叭上感受到这些良好的特质,
  proac所采用的6.5吋透明pp振膜的scan中低音单元,就可称之为这类单元当中最佳的典范。
  然而,相较于其它振膜材质,pp的刚性不甚佳,质量也较重。虽然用保鲜盒往脑门上k下去是很痛,但并不表示它在微观的高速小范围运动下就有很好的刚性,而这样的工作条件才是我们在单元振膜选用上所在意的。
  pp材质较弱的刚性造成了高速微动作时(高频段工作时),音圈发出的动能无法完全且一致的传达到整个振膜,也就是发生了“盆分裂现象”。虽然有良好的阻尼止住了盆分裂共振,但毕竟已无法作完美的活塞运动,失真率相对提高,听感上便是柔顺有余,解析力及动态却不足,有些以8吋pp振膜中低音单元为基础的二音路喇叭,
  会在中音到中高音域容易出现迟缓呆滞的症状,病因便在此。若在低音部份不要太贪心,选用较小口径的单元,便可在某种程度上减轻这样的问题。因为雪上加霜的是在大面积下要做到足够刚性所需的厚度相对较大,整体质量便水涨船高。所以,另一方面你也找不到高效率喇叭是采用pp振膜的单元。
  虽不像纸盆那样有吸水气的问题,但pp振膜会有随温度改变特性的倾向。幸好这点应该不至于困扰我们,因为就像纸盆和湿度的问题一样,这样的变化应属缓慢而渐进,就别太担心了!
  综观以上,pp好象因为刚性较差和质量较高的关系而不适于制作振膜,其实应该说是看我们如何在诸多妥协下作取舍了。就像前面提到的scan单元,虽然用上被我批评得很惨的pp振膜,但一样还是可以做出很成功的产品,整体表现一样很出色。
  或者,更积极的作法是对这种材质加以改良,也就是以pp为基础,再混入一些添加物,以加强其刚性。这个动作的确能带来一定程度的改善,使得制作出来的单元在动态、失真率、细节表现,和发声效率上都有不同程度的进步。如dynaudio和infinity/genesis都有采用此类处理的单元,虽然混入的添加物和制作方式不尽相同,但成效都颇明显。
  另外,既然石化原料和射出成型是这么的方便,所以当然有人会开发不同于pp的新材质,如bextrene、tpx,或neoflex的材质,其化学成份不详,虽看起来和pp很像,但这些材质的较佳刚性和较低质量能带来更好的动态及解析力,你应该能从各家喇叭的广告和型录上看到上述的材质,不妨有机会时验证一下。
  金属振膜
  既然刚性较弱会导致动态和解析力的缺失,那么利用高刚性的金属材质来制作振膜,应该会得到很好的效果才对。若不谈号角喇叭用的压缩驱动器,一般能看到用于直接放射的中音或低音单元所用的金属材质,应属铝金属或其合金产物为最多,最大的优势便是刚性很强,在一定范围的工作条件下不会变形,其结果便是很低的失真和很好的细节解析力。但是刚性强的另一面便是内损低,就像我上次提过的“一指蒋”高音一样,能量不会被振膜材质本身吸收,所以发生盆分裂时会有很明显的共振峰出现在频率响应的高端,若不妥善处理,就很容易出现“金属声”。
  所谓妥善处理,首先可以在分音器的设计上尽可能将此共振峰压制,也就是把共振峰安排在滤波的截止带或以外,让进入单元的讯号不要含有会激起高频共振的频率,于是共振峰便会被分音器所“隐藏”起来,我们就不会听到金属声了。为达此目的,通常必须要采用至少二阶以上的分频斜率,才能有效滤除;若用一阶,斜率太缓,不足以有效压制。若再把分频点往低端移动,又会牺牲掉可用的频宽,这样的作法不太健康。因此,高阶分频和慎选分频点是采用金属振膜单元所必须特别注意的。
  或者,相对于消极的避让,也可积极的改进缺点,那就是加强振膜的阻尼:三明治夹层结构、涂布阻尼物都是不错的方式。市面上这类的产品已经愈来愈多,其中也不乏相当成功的例子,如上一期“彻底研究”介绍的elac,或是声音和价钱都很高贵的瑞士ensemble。
  除了高频共振不好对付之外,振膜重量是另一项不利因素。因为成本的关系,还没见过用钛金属制作的中音单元。所以,金属盆的中音或低音单元虽可在强劲驱动下表现出色的动态,但整体的发声效率事实上还是偏低,一般需要较大的功率来伺候。
  合成纤维材质
  历来似乎最先进的材料都会先用在杀人武器上,真是好斗成性的人类之最大悲哀,要是拿来用在音响上让大家聆赏音乐,岂不是一片祥和?在硼碳纤维及蜂巢式三明治结构应用于战斗机上获致极佳成效的多年以后,才有人将这类的材料用在音响上。
  既然是航空级的材料,当然就兼具了质轻和高强度的双重优点,可以做到比纸还轻,刚性比金属还强,而且强度不只超过铝很多,甚至还高过钢铁(注2),用来制作喇叭单元的振膜应该是再理想不过了!所以各家制造kevlar或碳纤维单元的厂家,无不用力的标榜其高刚性、低质量、还有高阻尼的特性。前二项优点是成立的,但自体阻尼这一项则要视条件而定,并不一定就比较好。
  (注2:这是指其它的成形方式所能得到的最佳成果,并不是指薄薄的单元振膜可以会你家的菜刀还硬,至少目前还做不到。)
  若没有妥善处理,这类高刚性的人造纤维会和金属盆面临类似的问题,也就是高频盆分裂共振。虽不至于像金属振膜那么严重,但这个盆分裂共振的确存在,也轻易地达到扰人的程度。在没有妥善处理之下,听感上容易造成硬质的中频上段和高频下段,更厉害些便开始刺耳了。我在几年前曾读到一篇器材评论,其中主笔对kevlar中音的表现便是颇有微词。
  在加强阻尼处理(如三明治夹层或涂膜等),加上适当分频的条件下,这类单元就能够展现非常好的细节解析力、停动自如的瞬时响应、极佳的大动态及微动态,而且这些好表现只需一点点的功率。如focal的audiom 7k,采用kevlar及聚合物发泡三明治夹层振膜加乳胶涂布,效率可达98db/w,即使稍逊于audax纸盆的100 db/w,也算表现相当突出了(注3)。
  (注3:比较一下这二个单元的资料,发现focal audiom 7k的磁铁明显较大(1132g vs. 880g),振动部分质量也较低(7.3g vs. 9.1g),结果发声效率还是比“火力”较小的audax低,可见其它环节如悬挂顺服性、磁路系统的设计、音圈、振膜形状……等还是有许多的学问和妥协。)
  在较常见的carbon和kevlar fiber单元制品以外,另有一种特殊的人造纤维振膜在数年前问世 ─ had(high definition aerogel),由audax所推出,使用压克力聚合物凝胶和多种合成纤维(包括carbon及kevlar)所制成(注4),特性表现极佳,由测量上可看出非常好的瞬时响应,失真极低,同时又能得到平滑的高频滑落特性,完全没有出现高频共振峰,目前的制成品虽在发声效率上不如纸盆或kevlar,但应该是磁路系统的设计企图心造成的差别,而其它项目的实力确也不容小觎。swans请来stereophile名主笔martin colloms所设计的三音路allure便采用了此种单元,我自己的短暂聆听经验是轻松自然有如上好的纸盆单元,解析力及动态表现又更加的现代化,听不出任何不良的僻性,称得上是非常成功的单元设计(当然,系统整合得当也应记一功)。
  (注4:这种凝胶与纤维的混合制程非常特殊,从制程的初期到完成,凝胶的体积会缩小至原来的十分之一。更妙的是,在此过程中聚合键结的长炼状分子会顺着事先加入的纤维而成长,所以其分子排列方向是可控制的,极佳的刚性和自体阻尼便由此而来。)
  其它材料
  其实,除了上述的四大类材质外,其它还有很多质轻强度佳的材质皆可制成喇叭振膜,如玻璃纤维、赛璐络纤维、石墨纤维、电木、丝质纤维、发泡聚苯乙烯、各种发泡塑料,以及真空烧结精密陶瓷……等,其中许多材料都大有可为,有些适于做高音,有些适于做中音,有些适于做低音,有些高中低音皆宜,各擅胜场。
  甚至还听过在日本有人研发出一种利用某种特殊的植物(就是霉菌啦),顺着设计好的模子,“长”出一个锥盆来!据称其发声之自然超乎任何材质。不过,我想这样的逸品应该是很难导入量产,因为成本实在太高(时间成本)。
  (在此要提醒一点的是,很多单元的振膜会做得让你看不出到底是什么材质;或反过来说,做得『很像』某种材质。基本上,这已几近仿冒行为,身为无助的消费者,我们只能小心为上)
  磁路系统
  看过了形形色色的振膜,我们再来看看磁路系统。前二期陈运双先生已介绍了许多的磁铁材质,在此便略过,而将讨论重点放在磁路系统的整体设计上。严格说来,磁路系统应包含音圈的部分,而不是只有磁铁和磁极结构,因为它们是一起动作,也应该在设计时一并考虑。
  简单的说,音盆之所以能动作就是*音圈,而音圈的动作是*其中电流变化的改变所产生之磁力与磁铁、磁极所产生的固定磁场相互作用而动作,这个原理大家应耳熟能详。其中,音圈的设计和磁隙的宽度、长度等有许多值得探讨的地方。
  音圈设计顾名思义,音圈就是发声用的线圈,是由漆包线加上特殊接着剂紧密整齐的缠绕在音圈筒上而成。漆包线的材质有铜、铝、银或其它合金,其横截面的形状大多做成长方形或六角形,以期能够达到最大的缠绕密度,也就是说在一定的音圈长度(注5)下能绕出较多的圈数,而较多的圈数便意味着更大的磁力,驱动力也就更好,音盆的加速度系数也就更高,结果便是能有高效率、大动态的能力。以扁线音圈来说,若横截面的形状做成长宽比1:5的扁长方形,绕制时以短边*在音圈筒上,做出来的音圈将可提供比圆形截面的音圈高出30%的加速度系数、效率和动态。
  (注5:音圈长度是指绕好的音圈在轴向上的长度,而不是绕线展开的长度。)
  音圈绕在音圈筒上,其压力总和是非常可观的。你可以做个简单的实验:用一段细绳(缝衣绵线、尼龙钓线或牙线皆可),使三分力气密密的绕在手指上,绕上十圈就好,看看有什么结果?相信不用几秒你就会急着将它松开。有些单元的音圈在高张力的缠绕下,对音圈筒所施加的总压力可达到以吨计!所以音圈筒必须是要非常的强固,同时,为抵挡音圈的发热,音圈筒也要相当的耐热才行。一般是用铝(合金)、kapton,或其它质轻、高强度且耐热的材料来制造圆筒。一些较讲究的厂家会将绕好的音圈组合做多重热处理,以达到更佳的稳定性。
  klipsh的jim hunter便曾在“speaker builder”的专访中提到,他们曾收到顾客送修的喇叭,其中高音号角驱动器已从烧熔的塑料质号角喉部掉下来,可见当时整个驱动器实在是烫得不可开交,但拆开后其中的音圈组竟然还是好的!
  音圈尺寸的决定存在着两难,若求驱动力以达到高效率及大动态,大直径的长音圈应该能担当大任;但这么一来,重量增加,电感量也增加,又将不利于瞬时和高频响应。而长音圈便代表了音圈只有一部分被磁隙涵盖,如此磁隙中的磁场对音圈的控制力较弱,也较容易被音圈产生的磁场所调变,造成失真较高。若音圈做得很小,虽本身很轻,但驱动力又太弱,达不到理想的发声效率和控制力,承受功率也受限。所以,音圈的大小和振膜面积、形状,及磁铁的磁力大小等因素应该要有一个最适化的妥协。
  磁铁及磁力系统
  再来看看磁铁及磁极的结构。传统上喇叭单元中的磁铁都是轴向极化,也就是磁铁的两极方向和空心圆柱形磁铁的中心轴方向平行,然后再使用导磁材料做成的磁极将磁力线引导至磁隙中,构成回路。而音圈动作所需要者便是磁隙中的径向磁场,也就是磁场方向平行于半径方向,呈向心收敛或离心放射。磁隙中的总磁力强度和磁束密度便是源自于磁铁的磁力,而这其间和磁铁种类、大小有关。绝大多数单元采用的磁铁便是铁氧陶瓷磁铁(三氧化二铁),因为这种材质的抗温度变化力很好,对抗反充磁的能力很强,机械强度和抗蚀性也佳,最重要的是成本低。但缺点是获得单位磁力强度的体积和重量都很大,所以为了要达到高效率,你总会看到巨大的磁路结构。高音单元或号角驱动器就不用说了,磁铁的直径一定比振膜大得多。而有些6吋到7吋的中音单元,其磁铁直径也可做到和振膜差不多大。甚至有些专业的10到12吋的中低音,磁铁直径也和振膜一样大!
  高磁力是我们所希望的,因为它能带来高效率、高动态、高控制力等好处。但是大体积的磁铁除了看起来比较雄状威武,其它便不见得有什么好处,甚至于对音波的传播会有一些不良影响。因为巨大直径的磁铁直接挡在振膜后方,背面的音波就只好从四周的侧面挤出来,有一部分还会直接被反射回振膜。若这个单元又是固定在很厚的障板上,情况就更雪上加霜了,因为振膜和磁铁间的距离也许和障板厚度差不多,若无额外的加工处理,那么背波就会从剩下的一圈窄缝间“喷出”。此时振膜背面所面临的,就是很强的近距离反射波和剧烈的压力变化,对整体的频率响应和失真都有很严重的不良影响。
  所以若是用上了磁铁结构特大的单元,就必须要将障板的内面做适当的加工,削出信道让背波可以顺利导
  出,如theil的喇叭就有这类处理。或者就使用高强度而较薄的金属障板也可避开这个问题。其实,更进一步看,单元的框架设计同样也会面临类似的难题,像旧式以铁板冲压成型的框架,就有着较宽的支撑部分,若同时又和音盆本身*得很近,就会增加背波的反射而造成音染。新的铝质铸造框架则能做出较为理想的形状,同时兼顾强度、美观,及低音染的实用性。
  或者,使用高磁力小体积的磁铁来使单元背波得以充分地舒展。大约五年前,vendersteen(注6)推出的三音路喇叭中所用的中音单元便是特别向vifa订制,采用小型的neodymium磁铁。而wilson benesch的旗鉴bishop,因为采用特殊的面对面isobaric低音设计,单元的磁铁直接朝外,所以除了采用更新的强磁小型化镍铁硼磁铁,磁极还做成圆弧流线形,就连框架也在高强度的前题下做到了最小的正投影面积,解决先前提到的问题可谓面面俱到。而我多次提到的传奇性全音域单元lowther,虽问世已数十年,一样很细心的注意到这个问题。虽然lowther所采用的磁铁很大,但在形状上已尽可能流线化,巧妙的让出了音盆后方的空间,框架支撑部分也设计成以窄边面对发声方向,减低背波阻碍的努力可说无所不用其极。
  除了上述的问题,还有一项影响单元性能的因素,就是音圈在磁隙中的动作还有与磁铁的交互作用。严格说来,音圈和磁力系统的动作实际上是互推或互拉,只因磁力系统被框架和障板固定住,所以看起来好象是磁铁在驱动音圈。
  ( 注6:vendersteen这家喇叭厂的设计理念颇为正确健康,总将成本花在看不见的地方,外观包装极为简单节省,声音表现中规中矩,音乐性也佳,应是爱乐者的良伴。可惜体形较不讨好,始终不得本地代理商及消费者的青睐)
  认清这个事实后,衍生出来的问题有:一、音圈本身产生的磁力会对磁铁进行反充磁,所以磁铁必须要挺得住,动态、驱动力和效率才不会打折扣。而磁铁对抗反充磁的能力和特性也会影响发声的特性,使用alnico磁铁的喇叭在中高音域音色迷人,相信便和这个因素有关。 二、音圈本身产生的磁力会扰乱磁隙中原本恒定的磁场,造成失真。这个问题可以采用镀铜的磁极或插入铜质短路环来消除磁场的调变,进而大幅减低失真。这个技术对于中低音单元互调失真的改善尤其明显,因低音域发声需要运动冲程较长,同时又要发冲程短而快的中音,这会使磁场调变的复杂度大增。
  磁力系统的两难 vs. 创新的极化方向及磁极结构
  一开始谈到磁力系统的时候,我便提到传统上喇叭单元中的磁铁都是轴向极化,但无论如何到最后音圈需要的是径向的磁场。那么,为什么不一开始就把磁铁的磁场做成径向?因为制作上难度高、成本昂贵,一直到大约四、五年前才有人提出用径向极化的方式来制造喇叭单元。
  首先,传统的轴向极化结构有何缺点?一、体积较大;二、不易做到高磁束密度且深长的磁隙。体积大的问题先前已谈过,再来谈谈磁隙有啥蹊跷。
  传统磁力系统的磁隙长度就可说是等于上极板在磁隙端的厚度,在相同的磁铁条件下,要做到较高的磁束密度,首先可缩小磁隙宽度,但此举将使音圈的组合困难,增加成本;况且极板内的磁通量不可饱和,所以又要考虑极板材质和厚度。
  另外,若想做到长磁隙短音圈的组合,便势必会面临磁束密度降低的窘境,加上较短的音圈,整体发声效率将会降到很低。虽这样的组态可得到较佳的功率线性,但想同时兼具高效率,可要克服众多的两难。如altec 515系列和tad 160x系列,采用了短音圈长磁隙的架构,获致极佳的功率线性,同时又具有超高的效率,实在是非常的不容易,只能说这又是另一个人定胜天的例证。
  若使用径向极化的磁铁,兼具高磁束密度和长磁隙的磁力系统便轻易达成(成本还是不低,只是物理上的两难较少),等磁束密度的磁隙长度可比传统结构超出数倍,意味着单元的线性冲程也多出数倍!在高音压操作下的失真也就非常低。这样看起来便很适合于低音的再生,现在已有这样的产品,是一种用于专业领域的18吋低音(注7),据称其最大线性音压已让人耳无法忍受,而此时的失真仍非常之低!
  ( 注7:aura sound 1808,请注意这不是b&w的副牌aura,而是另一家公司。)
  可惜到目前为止,还没听说有用这种方式做成的中音单元。虽然中音不用长冲程动作,但这样的架构可以做到体积很小、磁力很强,对于中音发声一样是两大利多。相信在某家喇叭厂的实验室里便有这样的东西,很快的应该就会有量产品问世,我们拭目以待。
  跨入全音域
  咦?这篇文章不是要谈全音域单元吗,怎么光是中音就说了大半天?
  莫怪,莫怪!实在是因为全音域发声所面临的问题太多,无法一次说清楚,因此我想由中音切入,再往二端延伸,如此整体概念会比较清楚。因为一个理想的喇叭单元(无论高中低)要具备的条件应该是:一、低失真;二、功率线性佳;三、高效率;四、有效工作频段愈宽愈好。若我们把第四项发挥到极致,便是一个全音域单元了。
  下期我将会介绍如何以中音单元为基础推展到全音域发声,其中所会面临到的众多两难和各家厂牌的巧妙解决也是非常精彩,请拭目以待。
  乍看之下好象也不很复杂嘛,只要让一个中音单元再多发出一些高音和低音,不就成了全音域单元吗?你看那些汽车音响、计算机喇叭、手提收录音机、床头音响用的,不是到处可见那种不知名的“全音域”单元?好象也没多了不起嘛,穷嚷嚷的!
  事情可没这么简单,你可知道上述用途的那些不知名单元能发多宽的频段吗?我想不需要提供测量的数据你也可以轻易地听出,那些喇叭若能发出清楚的人声已属佳作,鼓声及铙钹也常仅供辨识而已,bass声及高音打击乐器声更是常在虚无飘渺间。管风琴?弦乐器泛音?钢琴残响?别闹了!
  至于如何才称得上是全音域发声,请参考边栏的说明。接下来我们要来讨论的是,要让一个单元去负担所有的音频范围在设计上会面临哪些问题和两难。
  低端延伸问题
  以外观而言,若尺寸相近,如同为6吋或7吋左右,锥盆中音和低音单元的差异实在有限,顶多是低音单元因需要较大的工作冲程而具备了较宽大而松软的悬边,其它的部分似乎“看起来”都差不多。但这也只是一般性法则,不见得放诸四海皆准。
  那么,若给你一个6吋至7吋的中音单元,是否有办法把它改成能发低音?若只求发得出低音而不管音压和失真程度,应该是可以的。一般来说,单元的操作频率下限一般可以粗略地由它的自由共振频率看出来(注1),也就是一般习惯性标注为“fs”者。
  那么,要如何调低这个频率呢?声学(音响)阻抗(注2)、振动部分质量、磁力强度,和悬挂顺服性等几项应是关键要素。其中,声学阻抗(或简称为『声阻』)与发声面积和工作频率直接相关,若以同尺寸直接发声和同频段工作而言,这项因素可视为相等而不必考虑(声阻这个概念对于低音的再生和全频段的发声效率息息相关,下次有机会再来谈这个主题)。所以,我们先来讨论其它的几项要素。
  让我们回头看看低频段工作时,单元振膜的行为。其实粗浅的说低频动作就是“慢速”的往复运动,单位时间内往返的次数少,这就是低频了。那么,就基本的物理学观念来看,在一定的施力大小之下,物体的加速与其
  质量成反比。所以,在其它条件相同或相似的情况下,振动质量愈大的单元,其自由共振频率就愈低。所以,若你稍仔细一些,去比较一下各种单元的数据资料,就会发现这项因素可说八九不离十。15吋以上的低音单元若自由共振频率在25hz以下,则振动部分质量常高达100公克以上。
  要调低一个单元的自由共振频率,最简单的就是增加音盆的质量了。但是,这实在不是个好主意,因为重的音盆势必会带来低效率和很糟的高频延伸。所以,看起来此路不通。那么,接下来我们可以减少音盆的外部阻尼 ─ 主要有机械性阻尼和电气性阻尼二个因素。无论是哪一种阻尼,都是对音盆的动作施与制动力,阻止其原本的动作。
  对此,我们可以用汽车的悬吊系统来作个比喻:传统的美国大车常为了舒适性而将悬挂调得非常软,要做到这点,简单说就是要用低弹性系数的弹簧和柔顺的避震器(减震筒),这样的组合便具备了很低的系统调谐频率(注3),因此就可以船过水无痕的吸收掉绝大多数的坑洞颠簸,因为这些外力都是短暂时间内的脉冲响应,转换成频率领域就是中高频,所以能够有效的被吸收而不会激起系统的共振。但遇上波长很长(也就是频率很低)的脉冲,如桥面的起伏,就常会产生二到三周期的缓慢上下晃动,这便是整套系统的共振频率被外力激发而引起的共振。
  同样的,在喇叭单元上,要调低系统的共振频率也可以从悬挂的顺服性上面着手。将阻尼减弱,共振频率就降低了,直接了当。但采用此法还是会面临一些问题,我们再细看下去:
  机械性阻尼方面:指的就是音盆悬边及音盆和音圈筒相接处附近黏附的波状折纹悬挂所施予音盆之制动力。这套悬挂系统除了对音盆整体的运动产生阻尼之外,另外对音盆的盆分裂共振也有抑制的作用,尤其是外围悬边。所以一个单元若换用不同的悬边,将会大幅改变其音色,因为整体的共振控制及音染的模式和程度都已不同。若为了调低系统共振频率而贸然大幅减低悬挂阻尼将会带来音染程度的增加,尤其是中音域部分。所以,调整机械阻尼须小心从事,适可而止。
  电气性阻尼方面:指的其实是单元磁力对音圈的控制力。当然,单元的磁力愈大,驱动音圈的动力就愈大,同时制动力也愈大。强大的驱动力是我们所希望的,因为可以带来高效率低失真,但是如影相随的高阻尼却使得系统共振频率无法降低;这里,进退两难的态势便明明白白摆在眼前,因此我们只能取一个妥协。若再加入高端延伸的问题,这个妥协就更是不易取舍了。
  高端延伸问题
  影响一个单元高端工作状况的主要因素和低端一样是“电气因素”和“机械因素”,只是情形不尽相同。所谓电气因素指的就是音圈所造成之电感性负载,我在先前的文章就曾提过这件事,现在让我们来看得更深入些。
  顾名思义,音圈就是一个电感线圈,若音圈单独存在,便是一个空心电感,此时,这个电感的电感量不高,而且很线性。不幸的是,音圈要在磁路结构内才能工作。没有例外的,音圈内就是中心磁极,这种结构就成了名符其实的铁心电感,这么一来电感量大幅提高,而且根据电感先天的低通特性,高频信号在这里就直接被大量衰减。更糟的是,随着音乐信号起舞的音圈与中心磁极的相对位置又不断改变,电感值和磁隙中的磁场便起了复杂的互动,严重的互相调变着,这种情况在大音量、宽频域发声时尤甚。此时,各种失真就直线上升,听感上便是模糊、粗糙、声音的纹理细节被抹平、立体音像溃散、音场扁平压缩。解决的方法是,在磁极上镀铜或插入铜片环,以使磁场短路,大幅减少相互调变,音圈的电感值也可大大的减低。此举可同时增加高频的延伸和降低失真。
  另外,所谓机械性因素就可以从物理学的基本原理来讨论:施力的大小等于质量和加速度的乘积(f=ma),其中加速度也就是速率的改变率。想象一下,一片振膜要在往前推的过程中减速,最后在冲程的终点停住,然后再加速往另一个方向后退,若是在20khz,这全部的过程要在四万分之一秒完成!有兴趣的读者不妨自设一个冲程值,然后算算这样一个半周期简谐运动的顶点加速度值有多大。我想,不用去算就可以想见在四万分之一秒当中作180度方向改变的运动是有很大的加速度值!
  所以,要做到这等高频响应,就要使振膜达到这么高的加速度。从上述简单的定律,途径只有二:减轻振膜质量和加大驱动力。但这么一来,许多的两难和矛盾也随之而来。
  难解的两难和矛盾
  振膜质量
  先前提到,要降低系统共振频率最简单的就是增加振膜质量;当然,这是很容易做到的。但是,为了高频响应和发声效率,这样又算不上是好方法。那么,我们不要硬碰硬,让单体在低频时“看到”较重的音盆,而在高频时就只看到较轻的音盆。
  听起来有点诡异?
  这是全音域单体的设计中非常巧妙的一招,也就是“机械性”分频。实际操作时的情况是,低音时,整个音盆一起动作,渐往高频时,利用盆分裂特性使得音盆较重且声阻较大的外围“来不及”跟着一起动。此时,真正随着音圈动的只剩下较内圈部分,相对上这个“局部”区域的音盆比起整个面积当然就轻得多了。所以,这样一来,随着频率的不同,音盆“实际有效”的运动质量就不同。如此,高频到低频的响应就可以同时达到。
  刚刚提到的“盆分裂”,说来轻描淡写,但稍微想想就可以体会到其中的重重困难。如何在某个频率以上使得一部分的振膜“来不及”跟着音圈动就很难控制了,再者,要让这些部分“既然跟不上就干脆别动”也不简单,因为,最怕的是跟不上音圈的驱动而自己乱动,徒然增加音染。而且要注意的是,单体实际在播放音乐时其中包含的频率很广,且时时刻刻在变。所以一旦这样的盆分裂不在控制之内就可以想见其失真之恐怖!
  驱动力
  先前有提到,若要让高频延伸,势必要有很强的驱动力来使音盆的加速度达到高频的需要。而驱动力的来源有二:音圈及磁力系统。把音圈的圈数绕多些就能产生较大的磁力,以便和磁力系统相互作用而产生较大的驱动力,但圈数多就意味着电感量的提高和质量的增加,这二者又都不利于高频,所以此路不通,音圈的设计仍要取一妥协。在此,“小而美”显然比“大而不当”要好得多。
  再来,我们只好增加磁力了。虽然先前提过,强大的磁路系统会造成很强的阻尼而使得自由共振频率不易降低,但是为了要达到高频发声所需的振膜加速度,磁力的强度还是要比一般单体强上许多,才有办法将“不轻”的音盆(注4)推出那种级数的加速度值,否则就和一般的中音单体没多大分别了。至于阻尼过度的问题,只好由放松机械性阻尼来做补偿了。
  系统整合问题
  不就只有一只单体,何来的“系统”整合?这里的系统整合指二方面:一是音域平衡的微调,二是装箱调谐的设计。此二者常相互牵动彼此。
  理论上,一个理想的全音域单体应该是在装箱后或固定在适当的障板上就可以直接连上后级,没有任何阻隔的发出天籁。但想想先前提过的种种进退两难的窘境,在设计者绞尽脑汁、呕心沥血,好不容易做出一只能够全音域发声的单体后,你还希望它能“全面性”毫无妥协的发出你想要的一切?请记住,在各种的进退两难中,绝大多数的出路便是“妥协”。
  若你对stereophile熟悉的话,应该对他们刊出的各种器材测试图谱有些印象。一般来说,扩大机的频率响应图在20hz─20khz之间几乎就像是尺画的一样平直,若是管机,顶多在频域二端有些微的滚降;而喇叭的频率响应图谱就崎岖得多,用坏掉的锯子来画还比它规则些。若再看衰减瀑布图和离轴响应,那就更糟糕了,各种奇形怪状的高山深谷遍布全频段。
  为什么喇叭的频率响应没办法作到像扩大机一样的平直?因为喇叭是机械性动作的组件,一动起来各个部分的能量传递、释放和储存会非常复杂,且相互关联。如此,免不了会存在许多的能量堆积或相互抵消的状况 ─ 能量堆积处形成共振峰;相互抵消处形成凹陷,这么一来崎岖的频率响应就不足为奇了。较佳的情况是崎岖的形态较缓和且均匀,如此可避免集中在一个特定的范围而形成明显的音染。若起伏很大或集中在一处就不妙了,强烈的音染不但扭曲了音域平衡,其共振峰处的能量不但较强,而且久久不散(常可在瀑布图上看出),所以会严重掩盖其本身和临近频段的解析力和微动态表现,就算用高q值陷波器来加以衰减还是无法解决不干净的残余共振。
  另外,单体的阻尼状况也常会表现在频率响应曲线的走势上。若高端上扬,则是中低音域的阻尼相对上有些过度,听感上便是紧瘦结实,稍偏明亮;若是反过来低端上扬,则是中低音域的阻尼相对上有些不足,听感上就较为肥胖宽松而昏暗。
  说了这么多喇叭单体的“黑暗面”,不外是要提醒大家,就算历年来各“传奇”的全音域单体各自在不同的领域理皆有其“超级制作”之处,但在无可避免的众多妥协之下,免不了有其取舍,而很难做得面面具到。就连乐器的制作都要投注极大的心力,才能获得音色的完美和全音域响度的平均,更何况是喇叭单体这个“二线”的模仿者。
  所以,一个全音域单体,虽可以做到全音域发声,但不见得一定平直。常见的问题有:中音部分(有些是中高,有些是中低)有宽而缓的凸出,造成听感上某种程度的音染;还有部分是高端有缓和的滚降,造成听感上较为昏暗;当然还有过度阻尼造成的低端滚降,听感上自然是又瘦又紧,低音没有量感。
  若是频率响应有些微的凸出,而这个音染又令人无法忍受,只好用一个陷波器来将这个凸出压平。若症状不严重,这个方式多半能有令人满意的结果。别瞧不起这样的组合,虽然这样一来后级到单体之间有了一些“阻碍”,但这算只是频率响应的修整,比起多路分音的喇叭中频率响应复杂的交叠和扭曲的相位,这还是单纯多多。而且,这类陷波器线路其实在许多喇叭的分音器上都可以找到,所以也不算什么见不得人的东西。
  若是高端滚降,则多半是因为相对上磁力系统不够力所致,或者是音盆太大,用上“机械分频”的技俩还是拖累太重,如早年的12吋甚至15吋的全音域单体或多或少有这样的问题。此时,除了加个高音单体,别无他法。你会说,唉,这算是哪门子的全音域!别急着下定论,若妥善处理,将高音单体的响应从16─18khz处(或甚至更高),以每八度-6db的斜率缓缓切入,还是能够得到很好的结果,因为分频衔接处已避开了人耳敏感的音域,且一阶分音能保持相位一致,所以还是保有全音域的“大部分”好处。(若你手上刚好有altec 412c,又嫌它们没高音,请赶紧通知我,我很有兴趣购买。等我弄出好声,你就别想再买回去)
  最后一种情况就是低音部分的滚降,这类全音域单体具有较强的阻尼,低音的听感常紧缩而短促,好处是细节清晰。此时若能使用适当的装箱调谐或甚至用号角负载来提升低音部分的声阻而提高效率,整体响应便很理想。若制作得当,这样的组合能提供最佳的全音域发声表现。
  既然提到了装箱调谐,我们就顺势谈下去。一般市售的喇叭,90%以上都是密闭音箱或开口调谐(一般俗称『低音反射式』)。只要是箱型喇叭便大致脱不了这二种设计及其衍生物,只有少数例外。对于全音域单体来说,应该要使其低音域发声时的振幅愈小愈好。因为振幅愈大,不仅低音本身的失真大增,同时中高音更大受影响。想象一下大振幅全音域发声时会是怎样的情形:中高音的小幅度快速运动“骑”在大幅度慢速的低音运动上,中高音的振动时而向你*近;时而离你远去,可想而知会带来很高的互调失真和都卜勒失真。虽说任何单体都会面临类似的问题,但全音域单体的工作频域远大于其它单体,所以这种情况会更明显而应极力避免或减少。
  在刚刚提到的二种主流装箱方式中,开口调谐应是较适合全音域单体的,因为这种方式可在系统共振频率附近(一般是30─50hz,视设计情况而异)大幅减少音盆的冲程。如此便一举三得:失真降低、承受功率较高、发声效率也高。因为这个缘故,绝大部分的全音域单体都可以用这种装箱方式得到大致上不差的效果。
  另外,有些纯粹主义者认为,这么好的单体装在箱子里会被箱体共振所玷污,所以不用箱子,直接装在开放式障板上。某些本身低音部分就足够的单体便适于如此使用,可以获得最无染纯净的声音,如we/altec 755c。据称,其中音瞬时快若闪电,比之静电喇叭毫不逊色,又有更佳的动态表现。但这个方式有一些缺点,首先当然是占地太大,因为系统的低音延伸取决于障板面积,为取得适当的低频响应,小则需要1公尺见方,大则没有上限,要将墙壁挖二个洞来装也可;再来是效率和承受功率都会较低,低频响应也会较弱;最后是双面发声会使得空间因素更形复杂难解,而二片大门板矗立眼前实在也不容易被大多数人接受。
  最后,便是最复杂的号角负载方式了。关于号角的种种,我们择期再详谈,现在只能大略的介绍一下。简单的说,号角就是一个呈喇叭状展开的管道,宽的这边称为“号角开口”,窄的那边称为“喉部”。号角的形状会造成喉部的声阻大于开口,使得位在喉部附近的单体振膜和空气分子间有很大的压力,也就是说这之间的能量可以的耦合得很好,因此发声效率很高。
  使用背载折叠号角的型式,在适当的制作下,中低音到低音部分的效率会有效的提升,刚好和之前提到的阻尼过度的单体能有几近完美的配合。
  注1:当然,实际应用时会因为装箱调谐方式而有很大的变化,所以在这里便略过这项变量很多的因素而只看单元本身的表现。
  注2:译自acoustic impedance,其定义为空气粒子的压力与速度的比值。
  注3:在其它的地方,如lp唱盘或cd唱盘的机械悬挂,通常一样需要很低的系统调谐(低于1hz),设计时要考虑的因素其实和汽车悬吊系统也有共通之处。
  注4:就算是用上了“机械性”分频的妙招,最终高频段工作时的等效质量还是比起一般的1吋直径高音单元要重得多了。
  注5:“看起来很好听”正是李建德兄的名言之一,因这个单元的因缘,特此引用
分享 转发
TOP
2#

话说前级放大器
南璋之 发布于: 2008-03-24 12:13
在音响系统里,前级放大器所发挥的功能并不复杂,它只是负责切换讯源、处理讯号与控制音量,这就是音乐信息在进入后级前的最后一道处理程序。它的连接位置,介于讯源器材与后级放大器之间,故前级放大器所扮演的角色——负责将讯号整理与调整。

设计上,前级放大器可以简单也可以复杂。

简单的前级只需要具备讯源输入、讯源选择、控制音量便行。换言之,简单的前级只要有一个讯源切换开关和音量电位器,加上一个机箱及输出入端子就成。

复杂的前级集中很多的功能:设计师可以在讯源输入里,针对每一种输入加上一个缓冲电路,以隔绝前级与讯源之间的缓冲接口;讯号经过切换开关之后,则以最复杂、最严谨的处理方式,进入一个庞大的电路架构,包含缓冲、等化、调整等等步骤,最后再经过另一级缓冲电路,将阻抗降低之后,才连接到输出端子。当然,这种设计可以使用简单的IC,也可以使用大量晶体管架构电路,想用真空管的话,当然可以在机箱内塞入满满的真空管,外加上电池供电等等额外的设计,只要具备前级的功能,是没有什么限制的。

简单还是复杂?前级放大器的设计形式和用料,像厨师手里的材料一样,可以不同搭配、不同的作法、不同的烹饪方式、泡制出来不同的口味;电子设计师也像厨师一样,当然也可以使用任何电子材料,任意搭配设计与作法,设计制造出一部前级放大器,回放出来的声音的音色,各有各不同的多种结果。记得80-90年间,Burmester就有一部808,稍后Mark Levinson的Cello出了一部Pallet Suit额,成为复杂前级放大器的典范。
Mark Levinson的Cello Suite

简单的被动式前级、夸张复杂的全功能型前级我在这里不谈(事实上我在十多年前翻译过一篇Counterpoint的唱放前前级,共享了17枝真空管,夸张复杂之极),我们将焦点集中在标准的前级应该具备哪些基本架构。

前级放大器又称「前置放大器」,通常设定的放大倍率为10倍,故也又称「10倍放大器」,人们简称为「前级」。

是任何器材皆必备的,前级仅使用讯号线输出入,目前市面上的前级采用的输入端子,除了Mark Levinson早期的机型使用Lemo头之外,其的多数是单端的RCA端子,或是平衡的XLR端子。这种三孔插头与数码转换器使用的「AES/EBU」平衡头完全相同,请留意名称上的差异。XLR、平衡头、Canon头指的是插头本身,而「AES/EBU」指的是数字传输的格式;看到前级上XLR头,就说是「我的前级具有AES/EBU插头」,会闹笑话的。一些欧洲器材偶然会使用特制的输出输入端子,Linn、Naim都曾经使用过多孔DIN插头,它们与平衡头一样,具有负端先接地的功能,因此在未关机的情形下,可以直接拔除讯号线而不会发出杂音,使用单端RCA头的用家绝不可贸然一试。

讯号由输出入端子进入前级之后,利用电路板或隔离讯号线,将讯号引导至切换开关,切换开关负责切换输入的讯源,透过数个切换开关的搭配使用,也可以控制录音输出的讯源种类,方便您一边听音乐,同时录制另一讯源的音乐。讯号经过切换开关之后,再进入左右声道平衡控制电位器,音响使用的平衡电位器为特制的MN型,此种电位器设计特殊,向左边旋转时,左声道的音量维持不变,但右声道则随着角度逐渐衰减,旋钮转至最左边时,右声道恰巧没声音;同理,向右边旋转时,左声道逐渐降低音量,藉此达到控制左右声道音量的目的。正常的使用之下,并不需要调整左右平衡,因此部份前级逐渐省略这项设计,或者将左右平衡电位器隐藏于机箱角落,反正它不常用到。

经过平衡电位器之后,讯号接着进入音量电位器。音量电位器也使用专用的A型电位器,这种电位器依照对数特性制造,使旋钮旋转的角度,可以随着耳朵的感受而线性增加。正常使用的音量电位器,应该转至那个角度才属正常?这没有一定的答案,要看整体器材搭配的总增益而定。音箱效率高、后级增益大者,前级所需负担的放大倍率就得降低,音量开一点点声音就很大了;反之,单增益前级由于放大倍率仅有一倍,因此往往把音量开到底,仍然还有不够大声的缺憾。正常而言,旋钮位置由九点钟方向至十二点钟方向之间皆正常,转动时也最顺手。

讯号经过音量电位器之后,便直接进入放大电路。放大电路有繁有简,设计形式不一。放大电路输出之后,有的前级会设计哑音Mute继电器,藉此控制前级讯号的输出与否,经过Mute开关之后则直接连至输出端子。

前级的运作架构就是:输入→讯号切换→左右平衡→音量控制→放大电路→静音开关→输出。

主动与被动的差异

「主动」(「有源」)的意义在于电路中使用主动组件,主动式前级便是有源前级,是必须插电才能工作的前级。有前级不需要插电的吗?有的,这就是被动式前级。

从电路架构上分析,被动式前级其实就是省略了「放大电路」过程,讯号输入之后,经过讯号切换开关,进入平衡控制(或者将此功能省略),再使用一个音量电位器控制音量,最后直接输出。就控制音量的角度而言,它仅能衰减而无法放大,就阻抗匹配的功能来说,它也无法扮演缓冲的角色,因此被动式前级是最经济也最直接的前级。First Sound是最有名的被动式前级之一,内部仅由切换开关与音量控制器组成,由于没有任何主动组件,因此S/N比相当高。Jeff Roland的Synergy也是楚楚之典范

主动与被动之间各有哪些优缺点呢?

主动式前级具备放大电路,可以将输入的讯号放大后输出,因此增益绝对充足有余;被动式前级除非使用被动式升压器提升输出电压,否则是永远不可能达成放大的任务。就缓冲与阻抗匹配的角度来看,主动式前级由于具有主动组件进行讯号放大,因此可以将阻抗特性较高的讯源,转换为较低阻抗的讯号输出,易于驱动后方的后级线路。这也是被动式前级所望尘莫及的要求。被动式前级充其量只能衰减,在音量全开的情况下,等于讯源直入后级,其中并没有任何缓冲的作用。假如使用升压器将电压放大,放大之后的结果也必须遵照质、能不变的物理原理,而增加了输出阻抗。因此几乎没有任何一部被动式前级愿意使用升压器进行电压放大,顶多使用一颗音量电位器控制音量罢了。

既然被动式前级缺点这么多,为何还有存在的必要呢?

因为被动式前级没有放大电路,其讯号通路直接,能够将讯源器材的讯号以最简短的路径直接输出给后级,这就是人们采用被动式前级的初衷。由于不使用主动组件,因此没有任何的失真、音染、噪声、相位飘移等问题,也由于使用机械开关,因此被动式前级也没有增益频宽积的限制,正常设计的被动式前级可以传输数MHz的讯号,尤其是噪声以及S/N比规格两项,几乎没有任何主动式前级可以匹敌。各有优缺点吧!只要该前级适用于您的系统,是没有什么不可以的。

真空管前级

依照电子材料发展的历史来看,最早发明的电子组件是真空管,隔了数十年之后半导体发明,半导体之中先以锗晶体问市,之后才是硅组件的天下,等到制造硅晶体团的技术成熟,才有集成电路(IC)的出现。因此前级使用主动组件的过程,是跟随着半导体组件发展的历程而进步的。最早的前级扩大机全部是应用真空管设计,从电源部份开始,变压器输出交流电压后,便以二极管进行管整流以及管稳压的动作,真空管的整流特性与稳压特性并不理想,因此早期的真空管前级声音普遍也不理想,哼声中夹带着嘶声噪音,S/N比不高、频宽也不够,不过对于当时而言,这已经是不错的产品了!

电子组件不断进步,扩大机的电路水平也逐步提升,半导体发明之后,以半导体取代部份真空管,效率不高、功能不佳的真空管整流与管稳压,逐渐被半导体组件所取代。体积小、动作稳定的半导体,制造出了稳定的电源,前级扩大机的性能也提升不少,背景噪音大幅度降低,S/N比马上提高不少,哼声消失了,聆听音乐开始进入更高级的享受。

至目前为止,大部份的真空管扩大机仍然以半导体稳压为主。其实对于声音而言,真空管确实是无可取代的好组件,它的体积虽大,但却有其独特且无法取代的音色,温暖、醇厚,都是管机常见的特色。坚持使用真空管放大的Audio Research以及Sonic Frontiers,两家的前级几乎全为真空管设计,但不可否认的是,它们设计师仍然偏好使用半导体进行整流与稳压的工作。真空管的电路架构,早在二十年前就已经发展完成,差动、串迭、推挽、倒相,无一不在早期的真空管前级中出现。使用相同的组件要达到相同的目标,方法不外乎是那几样,因此对于现代的真空管设计者而言,电路的创新反而不再是追求的目标,为真空管线路提供一个稳定、干净的电源,搭配质量优秀的被动材料,便能让真空管好好的工作。最后,再藉由零件的搭配,进行调整声音的工作。

有的真空管前级线路很复杂,有的仅使用一支真空管,这其中有什么差别?难道管子越得越多声音就一定越好吗?这答案当然不一定,目前前级当中真空管使用最多的可能是Sonic Frontiers Line 3,它是Sonic Frontiers最高级的前级,一口气用了12支真空管;而也有不少真空管前级,仅使用一支双三极管进行放大,如Audio Research LS-2。前级使用数量的多寡当然不能表示声音一定好,严谨的态度进行规画与设计,否则真空管的音染、失真等问题,还没开声就已经难以收拾了。设计者进行高级器材的规划时,必然考虑到线路架构与其价格的等级分布,即使以相同的理念设计出不同等级的产品,价位高的声音必然要胜过旗下机种。真空管使用多寡与声音没有绝对的关系,设计者不过将器材设计得更完整严谨,以赢取消费者的信赖罢了。

真空管前级的巅峰之作,多年前Audio Research的SP-11以及最近热门的Sonic Frontiers Line 3。Sonic Frontiers喜欢使用精密的半导体稳压,配合真空管放大,声音兼具晶体机的透明度与管机的厚度。

混血真空管前级

混血前级曾经流行过一阵子,最早Luxman推出了以真空管及晶体管电路的Hybrid线路。混血前级的发展,主要目的在于截长补短,将半导体以及真空管的优点结合在一起,所形成的号召设计。

当半导体组件成熟的运用于音响电路中时,真空管似乎一下子失去了原有的地位,没有人对于体积庞大的真空管提起兴趣,音响器材不断标榜着全半导体、全晶体管的设计。但早期的半导体在制造以及线路的构成上,很难避免的会让声音变硬、变冷、甚至于变吵。于是开始有音响迷回头重新寻找管味,原来,音响迷需要的不仅仅是优异的特性,更重要的是回放声音的音乐性。

真空管比较有音乐性吗?

这当然无法论定,但对于当时而言确是不争的事实。Luxman率先把真空管摆入晶体管线路当中,让真空管负责一级的放大,藉由真空管的独特音色,「感化」晶体管的声音。Audio Research在推出了半导体前级不获好评之后,也重新回头检讨真空管受欢迎的原因。声音,其实才是音响迷注重的焦点;技术,不过是附属的噱头罢了。

Audio Research想到,FET与真空管同属于高输入阻抗组件,但FET却拥有真空管难以企及的频宽,但早期的FET声音偏冷,而真空管却洋溢着温暖的气息,何不将两者的长处融合,于是Audio Research使用FET输入,在输出段加入一支6922真空管,这就是脍炙人口的LS-2胆石混血前级。

LS-2的成功推出,确实为混血前级设计开出一条成功的道路,目前市面上仍有许多混血前级,它们同时拥有高频宽的特性,S/N比与晶体机无异,用家还能自行换管调声,反正只要声音好,殊途也同归。

Audio Research喜欢使用半导体与真空管的混血设计,打开内部之后可以发现真空管与晶体管、IC供列于电路板上。
晶体管前级

晶体管前级当然不限于场效应晶体管(FET)或双极性晶体管(BJT),晶体管的发展就是为了更好的规格而来的,因此当晶体管制造技术逐渐成熟时,音响的用料也朝向全晶体管的方向发展。晶体管与真空管的线路架构虽然类似,但却大不相同。晶体管体积小,可以在有限空间的电路板中大量使用,因此可以将线路设计得更严谨、更精密,不同的晶体管拥有不同的特性,适度的搭配便可以创造极佳的效果。

晶体管线路的发展仍然来自于真空管架构,差动是最长使用的放大方式,单差动、双差动、电流源、达灵顿、串迭等等电路技巧,可以依照设计者的喜好像拼图一般逐步建构,最简单的晶体管放大电路为单端放大,以一颗或以两颗晶体管直接放大;也可以利用复杂的架构,缜密且严谨的盖出高塔。Mark Levinson、Cello Encore、Palette以及Krell、Thershold等公司,是最喜好使用大量晶体管制造器材的公司。他们使用晶体管有几个特色:

一、数量其多无比,可以使用两颗的绝对不会以一颗解决。
二、偏好双极性晶体管,虽然在特性上FET拥有较佳的性能,但也许是习惯加上喜好,一部前级从头到尾几乎全是双极性晶体管。
三、对于电源供应相当讲究,以晶体管为主的稳压线路,其实就可以达到相当优秀的性能,使用低杂音零件所制造出来的直流电源,杂音特性足以与电池相比。但完美之外还要更完美,Mark Levinson、Cello等设计师,嗜好以多层次稳压,电源从变压器输出之后,以二极管整流,再以电容进行稳压,好戏从这里才开始,利用精密的晶体管稳压电路,稳压之后再稳压,一连两三次的串联稳压,让电源涟波完全没有发生的机会。

近代这几家嗜好以晶体管设计前级扩大机的厂家,也开始尝试加入FET以及IC的设计,电路架构依旧复杂无比,但声音却拥有极高度的透明感与分辨率,细节多到吓人的地步,却不见古早晶体管生涩的表情。可见,空凭电路架构与材料种类,并无法推断其声音的绝对表现,过去总有人说:FET的声音较清亮,MOSFET的声音具有真空管味,晶体管生涩没弹性,现在这些说法已经完全不正确了。

Mark Levinson、Krell以及Cello等厂商,酷爱使用大量晶体管堆砌线路,打开机箱一看,尽是满满的电阻与晶体管。

IC前级

有人说6DJ8是为音响而设计的真空管,那么NE5534应该就是第一颗专为音响而设计的IC。1981年对IC设计而言,尚不到发达的年代,Philips的子公司推出了NE5534 IC,宣称特别为音响用途而设计,特点是采用双极性晶体差动输入,低阻抗输出,适合在前级线路中使用。NE5534是一颗运算放大器OPAMP,它将放大器线路浓缩于一颗八支脚的IC内,只要附加几颗电阻以及防止震荡的电容,就可以构成前级放大器中所需要的放大电路。消息一出确实轰动业界,原本要使用不算少量零件构成的放大电路,竟然可以使用一颗IC取代,不禁让设计师看了傻眼。不过当时大家普遍不相信IC的声音,总认为它的特性甚差,声音不理想,因此并没有人愿意真正拿OPAMP来做前级的主要放大组件,除了MBL 6010之外。

早期的OPAMP特性确实相当不理想,它的回转率低,杂音特性不佳,还得依照不同的电路给予不同程度的补偿修正。但现代的IC性能可不能同日语,现代专为音响而设计的OPAMP,具有如FET及真空管高输入阻抗的优点(具有数M奥姆的输入阻抗,其实比FET还高),同时也有BJT低输出阻抗的优点(可以降至数十奥姆,也比小信号晶体管还低),它的回转率高达数千V / μs,输出中点电压低不可测。不必加装交连电容也可以直入后级,它的频宽更是惊人,直接拿来放大射频讯号也没问题,价格低廉特性超强,早已经成为音响设计必备的放大组件。

虽然现代的OPAMP特性极佳,但体积却依旧小巧,设计师认为如果一部前级内仅以几颗OP构成,卖得了大钱吗?因此IC前级的发展不在于声音,而是有没有办法卖高价钱。这世界上肯定没有任何前级比MBL 6010更幸运的了,一部前级仅使用十来颗NE5534 OPAMP,身价却高达六十余万元,德国人确实有一套。

MBL 6010与McIntosh C100皆以NE 5534做为主要放大组件,所不同的是,mbl 6010的线路相当简洁,而McIntosh C100则使用大量OPAMP盖成一部两层楼的作品。

数位前级

这是前级发展的新趋势,但碍于技术的研发并不容易,因此能够设计数字前级的厂家并不多。数字前级意味着控制与放大皆采用数字的方式进行,以前级的功能来说的确不必如此麻烦复杂,但尝新总是发展的原动力。数字前级如何工作?模拟讯号输入前级之后,利用内部的A / D转换,将模拟讯号转成数字讯号,再依据音量控制器的大小数据,以DSP进行运算,再以数类转换器的技术将计算之后的数字数据转成模拟讯号,再输出至后级扩大机。如此兜一圈是不是很浪费力气?但Accuphase认为,他们推出DC-300的用意在于宣告,模拟前级他们拥有高完成度的C-290V,为了因应数字时代的来临,推出复杂处理程序的数字前级正是迈入下一个挑战的开始。

就两声道的世界而言,数字前级的确多此一举,但Accuphase其实已经见到了未来。多声道的流行是不可避免的趋势,多声道等于环绕系统,从讯源的解读开始,就必须仰赖高度计算的数字技术,现今每一部环绕处理器必须使用数字化设计,利用数字技术解出每个声道的讯号之后,再利用模拟的方式进行放大。何不尝试直接以全数字化处理,将译码后的声音数据直接转换为输出,而省略了前级放大的部份?如此即可达到更直接的效果,对于音质的提升应该有实质的帮助。

其实数字前级的概念早在多年前就已经出现了,只不过这些数字前级存在于数类转换器之中。Vimak DS-2000应该是第一部融合数字前级的数类转换器,我们暂且不谈论这部数类转换器的种种设计,光就内部附属的数字前级进行解说。Vimak DS-2000的数位前级是这样的:在DS-2000内部拥有一个高位的DSP运算器,将CD数据以128倍超取样之后,再依据面板上的数字音量控制器,直接改写数字数据,进而决定DAC芯片的输出。换句话说,DS-2000的讯号输出正是DAC芯片的直接输出,而非经过音量电位器的衰减,它提供了最简洁路径的设计,也提供了最直接的音质。当然,Vimak的设计者来头可不小,这些数字技术对他来说并不困难,音响世界缺乏了Vimak,让很多数字厂家松了不少口气!

最出名的数位前级是Accuphase DC-300。
单增益前级

一开头提到,主动式扩大机内部具有放大电路,一般的增益为0至十倍,而被动式前级使用音量电位器衰减,其最大输出即等于输入。也有一种主动式前级,其放大倍率与被动式前级一样,这就是单增益前级。

单增益前级的目的在于:将前级想象成一个缓冲器(Buffer),在英文意义里,Buffer具有隔离、缓冲的作用,亦即不改变讯源器材的信号强度,但以高输入阻抗接收,以低阻抗输出的观念将讯号送出,因此单增益前级便具有阻抗转换的功能。市面上的单增益前级并不多,最主要原因在于增益往往不足,音量开至最大依旧意犹未尽,国产厂商交直流工作室推出的Encore前级,正是单增益前级的具体代表。这部前级使用孪生场效应晶体管做输入,以ZTX双极性晶体管做输出,具有高输入阻抗、低输出阻抗的特性,由于零件极少,因此S/N比奇高,将音量开至最大,耳朵贴近高音单体听不到任何嘶声,音色通透无染,细节呈现自然,是一部价格极其便宜音质极其优异的单增益前级。
前级放大器线路越简略就是越理想吗?

有非常多的废话谈论前级放大器,因此,现在是该为它澄清的时候了。在理想的环境聆听中,组件数目越少的讯号路径设计,这种放大器可能会越完全真实完美。这就是simple is the best理论。

每多用一个组件,会增加一分失真,而开关和音量控制却是主要的罪犯。但是很多好的录音能够达致做到,需要在前面的音调上,帮一个忙,才能消除掉回放时那些声音尖刺、令人聆听起来容易感到疲倦的毛病。

这样一来,就产生了这种情况:音调控制提供精密敏感的的运作(事实上许多高级层次的前级放大器都采用了步进制的电阻选择器取代了常用的电位器)。当你试听一个放大器,不妨做一个尝试:只使用它附有的低音与高音旋钮控制音量的时候,你会聆听到相应的差异。你应该相对地小的变化。这种现像不单只是发生在聆听摇滚音乐或流行音乐上,甚至聆听古典音乐的朋友,也会时常想找对一个「左手向下的」在高音上渐减的旋钮,驯化录音天然的顶端。

音量控制器已经尽力仍不能令放大器更高声输出——令书架型音箱的低音单元听起来像怪物 Cerwin Vega。请紧记我们提到的附加失真?为了舞会尽兴,将旋钮旋到低音和高音都提高的位置,整个声浪提高了,但失真已经开始吹拍喇叭。

两个世界都一起拥有是最好的?既有好音量调控制的前级放大器,又可以直接的音源输出,或设有一个「音量撤离」按钮,当需要时可以将它旁路。但要留意的一点,纯化论者会更甚至这仍然坚持越简单越好。
前级放大器与后级放大器输出、输入阻抗匹配

前级放大器与后级放大器皆有输出与输入阻抗这项规格,输出阻抗表示前级或后级放大器讯号输出的内阻,单位是欧姆,输出阻抗越低,就表示该放大器的内阻越低、驱动能力越强。同理,输入阻抗就是前级放大器或后级放大器对于讯号输入器材时所遇到的阻抗,单位也是欧姆。输入阻抗越高,就表示前端器材可以推得更轻松,同时也可以降低负载效应的影响。每部放大器都有输入阻抗与输出阻抗,一般而言,输入阻抗Ri越高越好,输出阻抗Ro越低越好。阻抗匹配理想上前级的输出阻抗越低越好,而后级放大器的输入阻抗越高越好,这是为了避免负载效应的影响。

通常后级放大器的输入阻抗,最好高于前级放大器输出阻抗的十倍以上,这样才能让前级的实力尽量发挥。这就好比火车头拉车厢的道理是相同的,相同的车厢让不同马力的火车头拉动,轻松程度自然不一样,马力越大(输出阻抗越低)的火车头,拉动重量越轻(输入阻抗越低)的车厢,自然轻松愉快。
前置放大器

在另外一个有关怎样选择前置放大器里的帖子,L版说:「这个时代讲求的是个性! 」的确,挑选前置放大器最重要的是该前置放大器的个性气质。

前级放大器最重视的它的频率响应范围一定要宽阔(5- 35K Hz以上)高频越延伸谐波、泛音、余韵才会丰富,高频不出色,中低频无论多么好,我也不接受,影响了听感。一台好的前级放大器,首先要做到整个声音音域要平衡,动态不能过大,也不能太小,声音解析力十分好,这样声音才会通透,音场的结像自然,乐器隔离度玲珑,尺寸大小才适当。
当提出怎样选择前级放大器需要考虑那些问题时,我忽然想起自己拥有的那 3部前级放大器,是我在无法作出取舍、选一部符合自己的构想的情况下,索性全把它买下来的(当然不是3部前级放大器在同一时间添置的)。这是一个多么笨的方法!?自己既然这样笨,还有资格继续写这篇文章?
要想丰润的声音,中低和低音最难调校,怎样调,利用什么材料,这就看你个人的工夫了。我当年的没有办法的办法是购置了几部前级放大器(Restek的Vector,喜欢它的频域宽,解释能力强,回放出来的声音认真清晰细致,我称它为「燕瘦」;另外一部称为「环肥」的是Audiolabor的Klar,它回放出来的声音就丰润细腻了,有血有肉,滑不留手,我仿如唐明皇般喜欢杨玉环多于赵飞燕,尤其像冬天寒冷天气里,它给我带来温暖;不像赵飞燕那般冷若冰霜,我心情燥热时才以她播放,回放出来的声音往往能令自己整个人沉静下来,起安神降燥的特殊功效。再者,我还有一部ARC SP 11 Mk II,那就专门用来聆听人声的特别措施了,由于接驳繁复,不像我的「燕瘦」「环肥」一部接XLR、另一部接RCA插头输入我的Restek Exponent后级放大器般方便,我只需要在Exponent背板的按钮上将Bal变Unbal,就可以选择「燕瘦」或「环肥」了。

这个例子说明前级放大器对聆听者的偏爱有直接关系,我聆听音乐种类、性质繁多,因此用了多部,其它的发烧朋友,当然要根据自己聆听那一类型的音乐去选择了。喜欢古典音乐的,当然频率响应范围一定要宽阔(5- 35K Hz以上);以聆听人声为主的音压和频域的要求就可以降低些……

总之,要诀还是要多些聆听,还要配合已选好的音箱结合起来聆听,只有这样,回放出来的声音才会是将来自己想聆听到的声音。

假如音响器材的前级放大器,能在速度、瞬变、动态、声压等要素,较为真实还原出来的话,就可以冷静的坐下来聆听音乐了,并可以进入音乐优美的境界,欣赏到音乐的内涵而深受感动。

玩HiFi的朋友往往会偏重于调校某些环节,而疏忽其它因素的影响,器材除了要配搭得宜之外,更要有一个好的聆听环境,悉心的调校和使用,才可以达到目的,不会是一蹴而就的。这些道理相信大部分的发烧友都懂得,但能够顾及全面去玩的朋友毕竟不多。单就器材使用方面,很多发烧友对自己的器材性能都不甚了了,往往因为使用不当,而将声音不好的原因归究在某些器材身上。结果「玩」HiFi变成了不停地「换」HiFi。我居住的这个小镇里,就有这样一位发烧朋友,玩音响的经历仅五六年,前后换了不下六套系统了。我说的是「套」,换的是整套!大家猜猜他现在是怎样玩前级放大器的?他现在是以玩CD Wadia 861为讯源(半年前曾玩过一台LP唱盘,弄不出好声音而转让或退回给代理了) ,这部机已经可以直接连接后级放大器了,因为它经已设置了有一个数码式音量遥控器。可是这位发烧友大概慕名或者是嫌Wadia 861数码声音较重,另外连接了一部ARC Reference II 前级放大器,然后连接到每边输出600W的Pass功率放大器,驱动一对Wilson WATT / Puppy 6。钞票原来是可以这样来花的!?大概他认为这样就能将声音真空管化了!

前级可以说是整个系统的控制中心。一般人对前级的理解,以为仅是前级只是用来控制音量的大小和选择讯源的一件器材,对于机上的按钮和设施往往视而不见,甚至对每个按钮的用途也懒得去理解,他们其实是浪费自己的金钱和设计者的心血,没有好好地去发挥它的性能。

就以一部最简单的前级为例,它通常只具备选择讯源和控制大小声的功能,但你不要轻视它,其实声音的好坏,与操作前级是否正确和调校有极大关系。先撇开调校不谈,就以控制音量旋钮(Volumn)来说,它可以说是一种艺术,音量的大小足以影响到整个系统声音的好坏。我居住的这个小镇里,又有这样的另一位发烧朋友,他喜欢欣赏鼓声音,招待客人就是鼓声连场,音量旋钮通常都旋至12.00 o’clock 或 13.00 o’clock位置,谁受得了。他不管听什么音乐,都以同一音量去听,以为录音好的自然声音就必然好听。更要命的是他以为大声就是好听,所以不管是听交响乐,或是单一乐器演奏都用同一音量去听,结果你听到邓丽君的歌喉声如洪钟,娇小的身躯变得像姚明雄伟,小提琴的体积扩大为倍音大提琴,结他的高音像古钢琴,低音部分像打鼓。当你听到皱起眉头,心中发闷时,他还对你说他的系统的动态如何的劲,歌手是如何的够中气,录音细节是如何多,简直可以把你气得半死!

为什么这些朋友会这样子去听音乐呢?纯粹因为他们少了去聆听音乐会,正统的现场音乐会。当他听过在同一音乐厅里演奏的交响乐队,和单一件乐器演奏时的音量大小,和真正乐器发声时,他会明白到什么叫做声音的比例,才能了解到单一件乐器演奏发声时的音量的响度。除了听现场外,其它解乐器发声和音量的方法,就是听一些不用扩音机系统的真人演奏。那么当你再去听那些CD上的罐头音乐时,就不会毫无准则地去调节音量,不但使声音失真,乐器变形,耳朵受罪外,听觉也可能受损呢!

音量控制的最高技巧,就是能令到自己的音响器材达到最佳的表现,能够将乐队、独奏乐器、真人唱歌时的音量大小,原汁原味地还原!就是HiFi的1:1的音量,同样比例的体积和同样大小的立体音场,彷佛整个交响乐队在家里聆听室作现场演奏!发烧友以为:只要把世上最贵的器材搬回家,就可以做到这样的景界。事实上并不像他设想的那么简单,其中学问多着。

怎样正确选择前级放大器

译者注:这是一篇这两天刚开始翻译的文章,目的是配合坛子里网友提出的要求,将会分段贴出,希望大家耐心等候。
当提出怎样选择前级放大器需要考虑那些问题时,我忽然想起自己拥有的那 3部前级放大器,是我在无法作出取舍、选一部符合自己的构想的情况下,索性全把它买下来的(当然不是3部前级放大器在同一时间添置的)。这是一个多么笨的方法!?自己既然这样笨,还有资格继续写这篇文章?

前级放大器的添加目标,是达成在你的音源(s)和放大器之间的协同作用。任何时候你有一个机会试听连接在你的系统中多部前级放大器,却说不出那一部的声音较另一部的声音好。理由是声音好的通常或多或少在价格上会较高,或者那部前级放大器的在电路设计上多做了很多功夫。

选择理想前级放大器时,你必需弄清楚两件事

A. 你的音源输出电压(最光盘驱动器是 2伏);
B. The input sensitivity of your amplifier (most amplifiers are around 1 volt) 你的放大器的输入灵敏度(大多数的放大器1伏在附近)

究竟你的光盘驱动器或其它的音源的输出电平小于或大于 2伏,你必需知道。在相同的音符上,如果你功率放大器的输入灵敏度小于或大于1伏,你也应该必需知道。一经你确实知道这些电压,你就可以好好的选择正确的前级放大器了。

首先了解两个名词代表什么。

音源输出电压(output voltage of your source)音源输出电压是一个不会变更的固定电平,除非你的音源有一个”可变的输出”。这一个 2伏的讯号(音乐),驱动着功率放大器的输入级,或者驱动着前级放大器,它依次驱动放大器的前级放大器的输入或功率放大器的输入级。

放大器的输入灵敏度(input sensitivity of an amplifier)

简单地说,放大器的输入灵敏度意思指有多少伏的电平讯号传送到功率放大器去。任何的电压量超过这个数量,将会令到你的功率放大器尝试使出更多的、超越实际上有的功率,结果令它超负载产生所谓”削波clipping”。

因此在所有的情况下,一个前级放大器理所当然的是用来控制来自音源的电压。当前级放大器音量向左被旋到最尽的时候,你能测算到只有零伏电压输出,功率放大器因此没有声音。当你把音量音量旋钮向右旋调把输出电压增大时,你的功率放大器便能驱动音箱发出声音。音量控制上的理想工作范围应该在一个向右1/4 与 3/4 之间,这是聆听电平的正常位置(实际上超越向右1/2位置时,失真已经存在了)。意思是说:前级放大器永远不会在输入信号里增添任何的电压,也即是”增益gain”。

什么情况下前级放大器需设”增益” 呢?有两个理由可能希望前级放大器增强增益:

A. 当功率放大器需要高于1伏才能到达全功率输出的时候。
B. 当你的音源只有小于2伏输出的时候。

某些功率放大器需要5伏输入,才能达到全功率输出,通常放大器设计,全部设定在2伏输入时便达到全功率输出。偶然间我们会看到某种放大器仅需要1/2伏输入便到达全功率输出。

一些被修改过的光盘驱动器的输出电平少于 2伏,一些数码模拟转换器 DACs 也有少于2伏输出电平的。(虽然大多数的 DACs 至少有 2伏或稍高伏的情况,有时可能达到5伏。)

喜爱乙烯基唱片的人,有时可能很难找到一部以输出的一部附设有 2伏的唱头和唱盘接线端子级。我曾看到过多数是1伏的。

假如音源只有 1伏输出电平的情况下,而放大器的输入灵敏度只有2伏,就必须多设一部有增益的前级放大器,否则便无法让后级放大器去正常的回放出该有的音压。即使有一对超高效率的音箱、聆听的要求仅是非常松软水平,但回放出来的音乐将会缺乏动态和重量感的。

一旦作出决心需要增益或不增益,便已经大大缩窄了选择范围。但无论选择增益或没有增益,都必需考虑匹配的「阻抗」。

所有的音源和放大器有被称为「输出阻抗output impedance」的东西。把它当作这部机对付困难负载的驱策能力,例如以很长的信号线连接放大器。

相反的情况,所有的放大器有被称为「输入阻抗input impedance」这种的东西。把它当作这部机遭逢到前级放大器或光盘驱动器所施的电平。
一般规律是愈低输出阻抗,愈比较易于驱策困难的负载。同样,愈高的输入阻抗,也是比较容易驱动。前级放大器最好是输出阻抗低于1000Ω去驱动一部输入阻抗为100,000Ω的放大器。

市面上的光盘驱动器的输出阻抗通常都相当低,但是不幸的是功率放大器的输出阻抗,通常都在 10,000Ω和 500,000Ω之间,多数是在50 KΩ附近。

50 KΩ是一个适当的负载,大多数的音源和前级放大器驱动时都不会产生问题。除非是以一部高输出阻抗的前级放大器,以额外长的信号线去尝试驱动一部50 KΩ放大器。结果可能经常不是低频响应衰落便是声音变得缺乏动态,或者两者同时存在。聆听者当然不希望回放出来的声音听起来单薄,因此,千万设法使用短的信号线。如果那部前级放大器的输出阻抗颇低,那么就没关系了,即使功率放大器在房子的另一边,仍然低频响应硬朗有重量感,也不会有衰落。

这里有3部前级放大器模型:

顶级的A模型跟据怎样在背板设定的选择开关,设有许多增益或没有增益;或者采用一个正常输出阻抗或低的输出阻抗。这样才能够确定它实发出独特的、或经常性的好声音。

模型B则没有增益,输出阻抗却是低的,对大多数的系统的匹配最为理想。
模型C有较大增益以及较高的输入灵敏度,迎合以较低输出的音源或较高输出灵敏度的放大器,或两者都存在都适配。

谈到这里,或许不妨多读的另外一篇文章:
《前级放大器究竟帮忙改善或伤害了声音》
假如玩家的讯号只是CD机,而音响系统所采用的功率放大器设有音量控制电位的话,用与不用前级放大器,则存在有可选用或不选用前级放大器的可能。事实上大多数的情况下,建议被劝告不要不选用前级放大器。
TOP
3#

虽然很长,不能一口气看完,但我认同他的观点,也复制另存了,打出来慢慢研究~~
最爱听JAZZ~~~~
TOP
4#

收藏!学习!
人生的高度,是自信撑起来的
我们不是欠缺成功的筹码,
而是欠缺自信。
TOP
发新话题 回复该主题